
www.manaraa.com

Benchmarking Purely Functional Data Structures
Graeme E Moss

Thesis submitted for the degree of DPhil in Computer ScienceUniversity of YorkDepartment of Computer ScienceJuly 1999

www.manaraa.com

AbstractWhen someone designs a new data structure, they want to know how well it per-forms. Previously, the only way to do this involves �nding, coding and testingsome applications to act as benchmarks. This can be tedious and time-consuming.Worse, how a benchmark uses a data structure may considerably a�ect the e�-ciency of the data structure. Thus, the choice of benchmarks may bias the results.For these reasons, new data structures developed for functional languages oftenpay little attention to empirical performance.We solve these problems by developing a benchmarking tool, Auburn, that cangenerate benchmarks across a fair distribution of uses. We precisely de�ne \theuse of a data structure", upon which we build the core algorithms of Auburn:how to generate a benchmark from a description of use, and how to extracta description of use from an application. We consider how best to use thesealgorithms to benchmark competing data structures.Finally, we test Auburn by benchmarking several implementations of threecommon data structures: queues, random-access lists, and heaps. These andother results show Auburn to be a useful and accurate tool. They also revealareas requiring improvement, which we list as future work.

ii

www.manaraa.com

Contents
1 Introduction 11.1 Functional Languages . 11.2 Functional Data Structures . 21.3 Benchmarking Functional Data Structures 51.4 Terminology . 61.5 Overview . 72 Implementations of Three ADTs 92.1 Queues . 92.1.1 Na��ve Queues . 112.1.2 Batched Queues . 112.1.3 Multihead Queues . 112.1.4 Banker's Queues . 122.1.5 Physicist's Queues . 132.1.6 Real-Time Queues . 142.1.7 Bootstrapped Queues . 142.1.8 Implicit Queues . 152.2 Random-Access Sequences . 162.2.1 Na��ve Lists . 192.2.2 Threaded Skew Binary Lists 192.2.3 Balanced Trees . 212.2.4 Braun Trees . 262.2.5 Slowdown Deques . 282.2.6 Skew Binary Lists . 292.2.7 Elevator Lists . 31iii

www.manaraa.com

iv CONTENTS2.3 Heaps . 322.3.1 Na��ve Heaps . 352.3.2 Binomial Heaps . 352.3.3 Skew Binomial Heaps . 372.3.4 Bootstrapped Skew Binomial Heaps 382.3.5 Pairing Heaps . 392.3.6 Leftist Heaps . 402.3.7 Splay Heaps . 412.4 Summary . 413 Datatype Usage Graphs 433.1 De�nition . 463.2 Evaluation . 513.2.1 Order of Evaluation . 533.2.2 Abstract Evaluation . 553.3 Pro�le . 553.4 Shadow Data Structure . 603.4.1 Shadowing . 613.4.2 Guarding . 653.4.3 Phasing . 703.4.4 Shadow Pro�ling . 743.4.5 De�nition . 763.5 Summary . 764 Implementing Datatype Usage Graphs 774.1 From Pro�le to Benchmark . 774.1.1 dug Generation . 784.1.2 dug Evaluation . 924.2 From Application to Pro�le . 954.2.1 dug Extraction . 954.2.2 dug Pro�ling . 984.3 Technical Details . 1024.3.1 dug Generation . 102

www.manaraa.com

CONTENTS v4.3.2 dug Evaluation . 1064.3.3 dug Extraction . 1084.3.4 dug Pro�ling . 1094.4 Testing . 1104.4.1 dug Generation . 1104.4.2 dug Evaluation . 1134.4.3 dug Extraction . 1134.4.4 dug Pro�ling . 1154.5 Summary . 1155 Exploring Datatype Usage Space 1175.1 Exhaustive Exploration . 1175.2 Selective Exploration . 1195.3 Capturing Size . 1215.3.1 Growth and Decay . 1215.3.2 Linear Weights . 1235.3.3 Markov Chains . 1245.4 Inducing Decision Trees . 1255.4.1 The Algorithm . 1275.4.2 Simplifying Decision Trees 1325.5 Summary . 1376 Auburn: Benchmarking Tool 1396.1 Design Rationale . 1396.1.1 Dynamic Linking . 1406.1.2 Overhead of dug Evaluation 1406.1.3 Describing dugs . 1436.1.4 Re-compilation . 1436.2 Overview of Auburn . 1446.3 adt Signature . 1456.4 dug Manager . 1476.4.1 dug Generating . 1476.4.2 dug Pro�ling . 148

www.manaraa.com

vi CONTENTS6.4.3 dug Describing . 1496.5 Shadow Data Structure . 1496.5.1 Trivial Shadow Data Structure 1516.5.2 Size-Based Shadow Data Structure 1536.6 dug Evaluator . 1556.7 Null Implementation . 1586.8 dug Extraction . 1596.9 Automation . 1606.9.1 Benchmarker . 1616.10 Summary . 1647 Results 1677.1 Benchmarking Three adts . 1677.1.1 Setting Up . 1687.1.2 Tracing Bugs . 1697.1.3 Fine-Tuning the Implementations 1727.1.4 Inducing Decision Trees 1737.1.5 Summary . 1867.2 Evaluating Auburn . 1867.2.1 Real Benchmarks . 1867.3 Locating Inaccuracy in Auburn 1897.3.1 Insu�cient dug . 1937.3.2 Insu�cient Pro�le . 1967.3.3 Strictness Issues . 1997.3.4 Inaccurate Trees . 2007.4 Summary . 2028 Conclusions 2058.1 Benchmarking Theory . 2058.2 Benchmarking Practice . 2068.3 Criticism . 2078.4 Future Work . 2088.5 The Future . 208

www.manaraa.com

CONTENTS viiA Source Code of Implementations 209B Modi�cations to Implementations 235C Auburn Reference 245Bibliography 257

www.manaraa.com

viii CONTENTS

www.manaraa.com

List of Tables
2.1 Complexities of implementations of queues. 102.2 Complexities of implementations of sequences supporting random-access. 182.3 Complexities of implementations of heaps. 344.1 Di�erences between target and actual pro�les. 1115.1 An example of using Markov chains. 1245.2 A training sample. 1275.3 (a) A training sample. (b) A test sample. 1346.1 The overhead of dug evaluation methods. 1436.2 Shadow operations of simple adts that can be shadowed by size. . 1566.3 Rules for guessing the result of a size-based shadow operation. . . 1566.4 Guards for simple adts that can be shadowed by size. 1576.5 Rules for guessing the result of a guard using size-based shadows. 1577.1 The e�ect of modi�cations on performance of queue implementations.1737.2 The e�ect of modi�cations on performance of random-access se-quence implementations. 1747.3 The e�ect of modi�cations on performance of heap implementations.1757.4 The accuracy of various trees applied to the corresponding testsample. 1777.5 Performance of queue implementations. 1797.6 Performance of random-access sequence implementations. 1797.7 Performance of heap implementations. 182ix

www.manaraa.com

x LIST OF TABLES7.8 The e�ect of persistence on the performance of the RealTime andBatched queue implementations on the test sample. 1847.9 Results of running the queue benchmarks. 1907.10 Results of running the random-access sequence benchmarks. . . . 1917.11 Results of running the heap benchmarks. 1927.12 Correlation coe�cients for a benchmark and the evaluation of theextracted dug. 1947.13 Correlation coe�cients for a benchmark and the evaluation ofdugs with similar pro�les. 1977.14 Times taken to run the Quicksort benchmark using the Naive andBraun random-access sequence implementations. 202

www.manaraa.com

List of Figures
1.1 C program to insert and lookup a node in an ordered, unbalancedtree. 31.2 Haskell program to insert and lookup a node in an ordered, unbal-anced tree. 41.3 Compact C program to insert and lookup a node in an orderedunbalanced tree. 42.1 Queue speci�cation. 102.2 Speci�cation of a sequence supporting random-access. For the pur-poses of speci�cation, we treat a random-access sequence as a list. 172.3 An example of a threaded skew binary list. 202.4 Rotations of a binary tree. 232.5 Rotating binary trees. 242.6 Smart constructors of balanced trees. 252.7 The in�nite Braun tree. 272.8 The Braun trees of size four, nine and seven. 272.9 A list represented as a collection of complete binary trees. 302.10 The e�ect of cons and tail acting on a list represented by a collec-tion of complete binary trees. 312.11 A list represented (a) by Myers' random-access list, (b) by Okasaki'srandom-access list, and (c) by Myers' list with redundant pointersremoved. 322.12 Heap speci�cation. 332.13 The �rst four binomial trees. 352.14 Equivalent forms of the binomial tree Bn. 362.15 An example of a binomial heap. 36xi

www.manaraa.com

xii LIST OF FIGURES2.16 A merge of two binomial heaps and the corresponding binary ad-dition. 373.1 Two arti�cial simple applications of queues. 443.2 Graphs showing how the queue adt is used by the di�erent appli-cations given in Figure 3.1. 453.3 Haskell code giving the signature of a simple list adt AList 483.4 A dug for the list adt AList . 523.5 A shadowing of adt AList . 633.6 Haskell code for SList -guards of the operations of AList 693.7 Functions implementing an SList -phasing assigning lists no longerthan the phase argument to phase 1, and those longer to phase 2. 723.8 Functions implementing an SList -pro�ling. 754.1 Overview of the dug generation algorithm. 784.2 Haskell code giving the signature of a simple list adt. 814.3 Overview of the dug generation algorithm (part I). 834.4 Overview of the dug generation algorithm (part II). 844.5 Overview of the dug evaluation algorithm. 934.6 De�nition of a wrapped adt. 994.7 A plot of maximum live heap against maximum frontier for duggeneration. 1124.8 Overhead incurred by modifying an application for dug extraction,plotted against size of the extracted dug. 1144.9 A plot of maximum live heap against maximum frontier for dugpro�ling. 1165.1 Mapping datatype usage space with two attributes. 1185.2 An example of growth and decay phasing on lists. 1225.3 Two linear functions giving weight ratios for lists. 1235.4 Decision tree for an (imaginary) adt storing a collection of papers. 1265.5 Generic pruning scheme based on error prediction. 1335.6 Decision tree induced from the training sample of Table 5.3(a). . . 1346.1 Times taken to compile dugs as Haskell programs. 141

www.manaraa.com

LIST OF FIGURES xiii6.2 Structure of Auburn. 1456.3 Haskell code giving the signature of a simple list adt. 1466.4 Output from the GraphViz package viewing the dug of Figure 3.4. 1506.5 Textual description of the dug of Figure 3.4. 1516.6 Textual description of the dug of Figure 3.4 as a Haskell program. 1527.1 The smallest dug found by the queue benchmarker that causes anerror in the physicist's queues. 1707.2 The tree induced using the gain criterion on the training samplefor the queue adt, pruned using the reduced error method. 1807.3 The tree induced using the gain criterion on the training samplefor the random-access sequence adt, pruned using the reducederror method. 1817.4 The tree induced using the gain criterion on the training samplefor the heap adt, pruned using the reduced error method. 1827.5 Examples of graphs plotting data with di�erent correlation coe�-cients. 1957.6 Correlation coe�cient for implementation e�ciency plotted againstthe percentage di�erence in size, as reported by the shadow pro�le. 198A.1 Bankers queue implementation. 209A.2 Batched queue implementation. 210A.3 Bootstrapped queue implementation. 210A.4 Implicit queue implementation. 211A.5 Multihead queue implementation. 212A.6 Physicists queue implementation. 213A.7 RealTime queue implementation. 214A.8 AVL random-access sequence implementation (part I). 215A.9 AVL random-access sequence implementation (part II). 216A.10 Adams random-access sequence implementation (part I). 216A.11 Adams random-access sequence implementation (part II). 217A.12 Braun random-access sequence implementation. 218A.13 Elevator random-access sequence implementation. 219A.14 Naive random-access sequence implementation. 220

www.manaraa.com

xiv LIST OF FIGURESA.15 SkewBin random-access sequence implementation. 221A.16 Slowdown random-access sequence implementation (part I). 222A.17 Slowdown random-access sequence implementation (part II). . . . 223A.18 Slowdown random-access sequence implementation (part III). . . . 224A.19 ThreadSkewBin random-access sequence implementation. 225A.20 Binomial heap implementation. 226A.21 BootSkewBin heap implementation (part I). 227A.22 BootSkewBin heap implementation (part II). 228A.23 Leftist heap implementation. 229A.24 Naive heap implementation. 230A.25 Pairing heap implementation. 231A.26 SkewBin heap implementation (part I). 232A.27 SkewBin heap implementation (part II). 233A.28 Splay heap implementation. 234B.1 Bankers queue modi�cation. 235B.2 Batched queue modi�cation. 235B.3 Bootstrapped{1 queue modi�cation. 235B.4 Bootstrapped{2 queue modi�cation. 236B.5 Implicit{1 queue modi�cation. 236B.6 Implicit{2 queue modi�cation. 236B.7 Multihead queue modi�cation. 237B.8 Physicists queue modi�cation. 238B.9 AVL{1 random-access sequence modi�cation. 238B.10 AVL{2 random-access sequence modi�cation. 239B.11 AVL{3 random-access sequence modi�cation. 239B.12 AVL{4 random-access sequence modi�cation. 240B.13 Adams random-access sequence modi�cation. 241B.14 Braun random-access sequence modi�cation. 241B.15 Elevator{1 random-access sequence modi�cation. 241B.16 Elevator{2 random-access sequence modi�cation. 241B.17 Elevator{3 random-access sequence modi�cation. 241B.18 SkewBin random-access sequence modi�cation. 242

www.manaraa.com

LIST OF FIGURES xvB.19 ThreadSkewBin random-access sequence modi�cation. 243B.20 Binomial heap modi�cation. 243B.21 BootSkewBin heap modi�cation. 244B.22 Leftist heap modi�cation. 244B.23 Pairing{1 heap modi�cation. 244B.24 Pairing{2 heap modi�cation. 244B.25 SkewBin heap modi�cation. 244C.1 Help information for auburn. 246C.2 Help information for a typical dug manager (part I). 247C.3 Help information for a typical dug manager (part II). 248C.4 Help information for a typical benchmarker (part I). 249C.5 Help information for a typical benchmarker (part II). 250C.6 Help information for auburnExp. 251C.7 Help information for makeDugs. 252C.8 Help information for evalDugs (part I). 253C.9 Help information for evalDugs (part II). 254C.10 Help information for processTimes. 255C.11 Help information for cleanDugs. 255

www.manaraa.com

AcknowledgementsA studentship from the University of York funded this work, and many peopleinspired and encouraged me during its development. Firstly, I would like to thankChris Okasaki, without whom none of this work would have even started. Thework Chris and others have done in the �eld of data structures reveal some ofthe beauty within Computer Science.I would also like to thank: Mike Thyer, for countless discussions on manyissues relating to this work and to Computer Science in general; Nathan Charles,for keeping me sane whilst working in the o�ce; and those who were foolishenough to ask me about my thesis, for the reminder this gave me about my willto �nish.Most importantly, I would like to thank my supervisor, Colin Runciman, foralways being willing to listen, advise, and encourage, regardless of however muchother work he had to juggle.Finally, I would like to thank those who made my stay at York so much moreenjoyable: Andrew, Judith, Suzanne, Tony, Nick, Claire, Helen, Randall, Emma,Uzma, Catherine, Kristin, and Marie.

xvi

www.manaraa.com

LIST OF FIGURES xviiAuthor's DeclarationI presented a concise and informal version of Chapter 3 at IFL'97 [26] usingversion 1.0 of Auburn. All of Chapter 5, bar Section 5.4, appears in the draftproceedings of IFL'98 [27]. At PADL'99 [28] I presented brief and formal versionsof Sections 3.1 and 3.3, a summary of Section 4.1.1, and an illustration of the useof Auburn version 2.0a.

www.manaraa.com

xviii LIST OF FIGURES

www.manaraa.com

Chapter 1
Introduction
The importance of e�cient data structures is reected through literature span-ning many years [3, 11, 51]. Recently, this has included data structures andcomplexity models developed speci�cally for functional languages [14, 38, 40].But, in practice, what distinguishes a good data structure from a bad data struc-ture? What is the main reason whether a data structure is useful? Empiricalperformance! Yet most literature has paid little attention to this aspect of datastructures. We tackle this de�ciency by developing the theory and practice ofbenchmarking functional data structures.1.1 Functional LanguagesWhy use functional languages? Given the amount of literature on data structuresfor imperative languages, why do we need to bother with functional data struc-tures? There are strong arguments for the functional style of programming [5, 22].� Succinctness. A functional program is typically shorter than its imperativeequivalent. This helps reduce development and maintenance costs.� Clarity. The meaning of a functional program is arguably more immediate,by being shorter and by using features like algebraic datatypes and higherorder functions.� Reasoning. The lack of state allows referential transparency, which in turnallows the meaning of a program to be independent of its surroundings.1

www.manaraa.com

2 CHAPTER 1. INTRODUCTIONThis simpli�es any mathematical reasoning on a program, including forexample, a proof of its correctness. This also simpli�es the programmer'stask, by aiding their own mental reasoning about a program.� Beauty. A functional program feels \cleaner" and more aesthetically pleas-ing. Through aesthetics, this a�ects the state of the programmer, theirenthusiasm to work, and thus the quality of their results.As a small example, Figure 1.1 and Figure 1.2 show C and Haskell versionsrespectively of a program to insert and lookup a node in an ordered, unbalancedtree. The most obvious di�erence between these programs is the di�erence insize. Figure 1.3 shows a more compact C program, but it is still larger than theHaskell program, and less understandable than the larger C program. The Haskellprogram is far clearer than either C program. Because of this size di�erence, andbecause of the lack of pointers, programming the Haskell version is far less error-prone. The Haskell programmer is free to think about the tree itself, rather thanhow the tree is represented.1.2 Functional Data StructuresGiven we want to use a functional language, why do we need data structuresspeci�cally designed for a functional setting? Will not the vast array of imperativedata structures su�ce? Unfortunately not, because of the greater demands afunctional language places on its data structures: A functional data structurecannot be destructively updated. No information can be lost until the programusing the data structure no longer requires it. In particular, when a data structureis updated, both the new and the old versions of the data structure must beavailable for further use.Some imperative data structures can be brought across to the functional worldwith little change. In most cases the design actually becomes clearer in a func-tional setting. Figures 1.1 and 1.2 illustrate this well. Okasaki gives anotherexample by implementing red-black trees in a functional setting [39] and furtherwrites in the conclusions section:

www.manaraa.com

1.2. FUNCTIONAL DATA STRUCTURES 3
#include <stdio.h>#include <stdlib.h>typedef struct node {int value;struct node *left, *right;} node;typedef node *tree;int member (int x, tree t) {while (t != NULL && t->value != x)t = (x < t->value) ? t->left : t->right;return (t != NULL);}tree mknode (int x) {tree t = malloc (sizeof (node));t->value = x;t->left = t->right = NULL;return t;}void insert (int x, tree *result) {tree t = *result , *tptr = result;if (t == NULL) {*result = mknode(x);} else {while (t != NULL && t->value != x) {tptr = (x < t->value) ? &t->left : &t->right;t = *tptr;}if (t == NULL) *tptr = mknode(x);}}Figure 1.1: C program to insert and lookup a node in an ordered, unbalancedtree.

www.manaraa.com

4 CHAPTER 1. INTRODUCTIONdata Tree a = Empty | Node (Tree a) a (Tree a)member x Empty = Falsemember x (Node l y r)| x < y = member x l| x > y = member x r| otherwise = Trueinsert x Empty = Node Empty x Emptyinsert x (Node l y r)| x < y = Node (insert x l) y r| x > y = Node l y (insert x r)| otherwise = Node l x rFigure 1.2: Haskell program to insert and lookup a node in an ordered, unbal-anced tree.#include <stdio.h>#include <stdlib.h>typedef struct node {int value;struct node *left, *right;} node;typedef node *tree;tree* find (int x, tree *tp) {if (*tp != NULL)while (*tp != NULL && (*tp)->value != x)tp = (x < (*tp)->value) ? &(*tp)->left : &(*tp)->right;return tp;}int member (int x, tree t) {return (*find(x,&t) != NULL);}void insert (int x, tree *tp) {if ((tp = find(x,tp)) != NULL) {*tp = malloc(sizeof (node));(*tp)->value = x; (*tp)->left = (*tp)->right = NULL;}}Figure 1.3: Compact C program to insert and lookup a node in an orderedunbalanced tree.

www.manaraa.com

1.3. BENCHMARKING FUNCTIONAL DATA STRUCTURES 5When existing imperative algorithms can be implemented in func-tional languages, the results are often much prettier than the originalversion. This has been amply demonstrated in the past for variouskinds of balanced binary search trees, including 2-3 trees [47], BB-trees [2], and AVL trees [31].Over the past six or seven years, many papers have given details of newfunctional data structures [7, 10, 14, 32, 33, 34, 40]. However, these papersonly give limited attention to empirical performance. Okasaki writes in an openproblems section of his thesis Purely Functional Data Structures [36], \The theoryand practice of benchmarking [functional] data structures is still in its infancy."This thesis develops the theory and practice of benchmarking functional datastructures.1.3 Benchmarking Functional Data StructuresSuppose we want to measure the e�ciencies of some competing data structures.The standard approach is to �nd a few applications to act as benchmarks, allowingus to measure the e�ciency of each data structure when used by each benchmark.Why not do this? Firstly, creating anything but a very arti�cial benchmark is asubstantial task. Secondly, using the results of just a few benchmarks, especiallyarti�cial ones, can be very misleading. The e�ciency of a data structure mayvary heavily according to how it is used, and hence the choice of benchmarks maydetermine which data structure appears to be the best|see Section 7.2.1 for anexample of this. Worse, we will not know if our choice of benchmarks is \fair" ornot.We solve both of these problems by developing a benchmarking tool, Auburn,that creates a benchmark according to a description of use. By generating a fairdistribution of benchmarks over a wide variety of di�erent uses, we not only �ndwhich data structure is best overall, but also which data structure is best for aparticular use.Suppose that we have a single application in mind, and we wish to choose oneof many competing data structures to use in our application. Why not simply

www.manaraa.com

6 CHAPTER 1. INTRODUCTIONmeasure the performance of our application using each data structure in turn?Unfortunately, this approach does not reveal why the data structures perform asthey do. If our application changes how it uses the data structures, a di�erentone may now be the most e�cient, without us knowing why.By measuring how our application uses the data structures, and how the datastructures' e�ciency varies according to this use, we can know why the best datastructure is best. Therefore, Auburn also creates a description of use from anapplication.1.4 TerminologyIn order to understand the following chapters, it is necessary to de�ne a few keyterms.� Benchmark. A benchmark is an application that can use any one of afamily of competing data structures. A benchmark is used to measure theperformance of such data structures.� Abstract Datatype. An abstract data type (adt) is a type with associatedoperations manipulating values of that type. A more detailed de�nition isgiven in Section 3.1.� Implementation. A data structure that gives a concrete realisation of thetype and operations of an adt is called an implementation.� Version. When an application uses a data structure, at any one point in thecomputation, there exist many di�erent instances of the data structure|forexample, a particular list, or a particular queue. Each particular instanceof a data structure is called a version of the data structure.� Persistence. Persistence is the property of allowing the use of any versionof a data structure in its original form after it has been updated. A datastructure that supports persistence is called persistent. A data structurethat is not persistent is called ephemeral.� Single-Threaded. An application is single-threaded in the use of a datastructure if it does not use any persistence supported by the data structure.

www.manaraa.com

1.5. OVERVIEW 7� Amortisation. When applied to the complexity of an operation, amortisa-tion implies that the cost of an operation is considered in the context ofa group of operations, rather than in isolation. This allows the cost of anexpensive operation to be spread over many surrounding inexpensive oper-ations. Note that all complexities are arguably amortised in a lazy languagelike Haskell.1.5 OverviewChapter 2 reviews some implementations of three di�erent adts: queues, random-access sequences, and heaps. The details of the implementations provide an ex-ample of the di�erent ways of implementing an adt. They also add meaning tothe results of benchmarking the implementations in Chapter 7.Chapter 3 develops the theory of datatype usage upon which Auburn is based.It de�nes a datatype usage graph (dug) recording how a data structure is usedby an application, and a pro�le summarising the most important aspects of adug. This chapter also outlines how we can create a benchmark from a pro�le,and extract a pro�le from an application.Chapter 4 describes the implementation of the core algorithms of Auburn, asoutlined in theory in Chapter 3. These involve the creation of benchmarks frompro�les through the generation and evaluation of dugs, and the extraction ofpro�les from applications through the extraction and pro�ling of dugs.Chapter 5 investigates how we should use Auburn. There are many ways wecould use the algorithms of Chapter 4, but we need any method to be e�cient,to be accurate, and to produce concise, clear results. This chapter presents a fewmethods, summarising their advantages and disadvantages, and then recommendsone of them.Chapter 6 outlines the design and use of Auburn. Chapter 4 gives the corealgorithms of Auburn, but there are many other design decisions in how to im-plement and combine these into one package. Most of the decisions relate to thelanguage in which we implement Auburn: Haskell.Chapter 7 reports the results of using Auburn on the data structures of Chap-ter 2. We examine the accuracy of these results, and the accuracy of Auburn as

www.manaraa.com

8 CHAPTER 1. INTRODUCTIONa whole. We also investigate the source of any inaccuracy in Auburn.Chapter 8 concludes and lists future work.Appendix A gives the code for the implementations of the data structuresdetailed in Chapter 2 and used in the �nal round of benchmarking in Chapter 7.Appendix B gives the modi�cations of the implementations of Appendix Aused in the �ne-tuning section of Chapter 7.Appendix C details the executables that make up Auburn.

www.manaraa.com

Chapter 2
Implementations of Three ADTs
In Chapter 7, we shall benchmark several implementations of queues, random-access sequences, and heaps. This chapter delivers the key idea behind eachimplementation. We may then interpret the results of the benchmarking in thelight of this review. Without such a review, the results hold little value excepttowards choosing one over another; with this review, the practical results of designchoices become visible and provide insight into their e�ectiveness.Each section of this chapter begins with a brief description and formal spec-i�cation of the adt. The following subsections review each implementation.We give references to papers describing the implementations in greater detail.As we organise the review by data structure, we can easily compare di�erentimplementations of the same data structure. Appendix A gives code for eachimplementation.
2.1 QueuesQueues are among the simplest of adts. They are sequences supporting insertionat the rear, and removal from the front. Figure 2.1 gives the speci�cation ofqueues. Table 2.1 lists the queue implementations and the complexities of theiroperations. 9

www.manaraa.com

10 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTStype Queue a = [a]empty :: Queue aempty = []snoc :: Queue a! a! Queue asnoc [x0; : : : ; xn�1] x = [x0; : : : ; xn�1; x]head :: Queue a! ahead [x0; : : : ; xn�1] = x0 (n � 1)tail :: Queue a! Queue atail [x0; : : : ; xn�1] = [x1; : : : ; xn�1] (n � 1)Figure 2.1: Queue speci�cation. For the purposes of speci�cation, we treat aqueue as a list. QueuesName Lazy Complexities of Operations ReferenceNa��ve - head/tail : O(1), snoc: O(n) n/aSimple - snoc/head/tail : O(1)z [20]Multihead - snoc/head/tail : O(1) [20]Banker's X snoc/head/tail : O(1)y [37]Physicist's X snoc/head/tail : O(1)y [38]Real-time X snoc/head/tail : O(1) [34]Bootstrapped X snoc/head/tail : O(1)y [38]Implicit X snoc/head/tail : O(1)y [38]Table 2.1: Complexities of implementations of queues, including whether lazyevaluation is required. Complexities marked with y are amortized. Complexitiesmarked with z also are amortized, but only under single-threaded use. All othercomplexities are worst-case.

www.manaraa.com

2.1. QUEUES 112.1.1 Na��ve QueuesWe can represent a queue directly as a list. The normal head and tail operationsof lists implement head and tail. List catenation of a singleton list implementssnoc.2.1.2 Batched QueuesHood and Melville [20] represent a queue as a pair of lists (f; r)|f giving thefront portion of the queue and r giving the reverse of the rear portion of thequeue. The queue of elements a1; a2; : : : ; an is therefore represented by the listsf = [a1; : : : ; am] and r = [an; : : : ; am+1], 0 � m � n with f empty only whenthe queue itself is empty. To insert an element onto the queue, simply add anelement to the front of r. To remove an element from the queue, take the �rstelement of f ; if this leaves f empty, then let the queue become (reverse r; []).Every operation except tail takes O(1) time. If an application of tail causes areversal of r, it takes O(n) time; otherwise, it also takes O(1) time. For any single-threaded sequence of operations, a reversal of r happens at most once every A(n)operations, where A(n) is O(n). Therefore we can conclude that A(n) single-threaded queue operations take O(n) time|an amortized complexity of O(1).However, persistence destroys this result. Consider an application of tail thatreverses the rear list. Persistence allows us to repeat this application inde�nitely,each application taking O(n) time. Therefore, in a persistent setting, the bestcomplexity we can give to tail is O(n).We take the name of this implementation from [38].2.1.3 Multihead QueuesHood and Melville [20] improve on the batched implementation of a queue bydistributing the reversal of the rear list over a number of operations. This givesreal-time queues, that is, the operations run in O(1) worst-case complexity.In order to continue performing operations whilst reversing the rear list, thereversal begins when the rear list r becomes larger than the front list f . Thereversal is spread over the following n operations, where n is the length of the

www.manaraa.com

12 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSfront list. These n operations create new front and rear lists fop and rop byremoving elements from f and by adding elements to the empty list respectively.At the same time, r is reversed onto the end of f to create a new front list fnew ,taking care to use only elements in fop . The lists fnew and rop form the newqueue. It is simple to prove that rop is no longer than fnew .To create the list fnew over n operations, reverse f to make frev , and at thesame time reverse r to make rrev . Then move elements from the front of frev ontothe front of rrev till an element not in fop is reached, or when all elements havebeen moved. It is su�cient to move only two elements per operation from f tofrev , from r to rrev , or from frev to rrev . Hence each operation takes O(1) time.The name multihead derives from the similarity of the solution to how multi-head Turing machines can be simulated. Full details are given in [20]. Note thatthere are two mistakes in the code given in [20].� The call cons[v,T] on line 4 should read cons[v,T'].� The value lendiff-1 on line 9 should read lendiff.Appendix A gives the corrected implementation.2.1.4 Banker's QueuesOkasaki [37] presents an implementation of queues with O(1) amortized com-plexity. He is able to give an amortized complexity in a persistent setting byappealing to the proof techniques that he develops in [32, 37], and presents in[38]. Representing a queue as a pair of lists is once again the basis of the im-plementation. Hood and Melville remove the problem of the O(n) persistentcomplexity of the batched implementation by explicitly scheduling a distributionof the work involved in performing the reversal of the rear list. Okasaki gives amuch simpler solution that uses lazy evaluation to implicitly schedule and sharethis distribution of work.The key idea is not to delay more work than a subsequent sequence of oper-ations can pay o�. Under single-threaded use, traditional amortization allows usto spread the cost of the reversal of the rear list r of length jrj over the previousjrj applications of snoc that built r. With non-single-threaded use however, we

www.manaraa.com

2.1. QUEUES 13may have several queues sharing the result of a snoc. This application of snoccan only bear a constant additional cost before losing its O(1) complexity. Asan arbitrary number of queues may share the result of the snoc, the batchedimplementation of queues cannot have O(1) complexity in a persistent setting.Okasaki shifts the burden of the reversal from the preceding sequence of op-erations to the succeeding sequences of operations|remember that there may bemore than one such sequence because of persistence. This is done by insistingthat a queue must never engage in a reverse whose cost cannot be spread overoperations that occur after the reverse is formed but before its result is required.The cost of the reverse can then be shared by the operations that occur betweensuspending an application of the reverse and executing this suspension. The costof the reverse is considered to be a debt, waiting to be paid o�. Lazy evalua-tion plays a key role here in two respects: a function application can be delayed,and the result of the delayed application can be shared. For further details onpersistent amortization, see [38].So when can we delay a reverse and still be in a position to pay o� its debtbefore its result is needed? Suppose we only reverse the rear list r and append itto the end of the front list f when jrj becomes larger than a constant k times jf j.As we apply tail to the resulting queue, the new front list will shorten. Until wehave removed all of f , the result of the reverse is not required. The number ofapplications of tail required to do this is equal to jf j. As jrj is at most a constantk times jf j, we can share the cost of the reverse over the jf j applications of tailby adding a constant additional cost to each. The operations therefore keep theirO(1) complexity.For a more formal argument using the banker's method of persistent amorti-zation proof techniques, see either [37] or [38]. The name of this implementationis derived from the proof technique used to give it its complexity.2.1.5 Physicist's QueuesIn the same way that Okasaki uses the banker's method to give O(1) amortizedbounds to banker's queues, he uses the physicist's method to give O(1) amortizedbounds to physicist's queues [38].

www.manaraa.com

14 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSThe major di�erence between the banker's and physicist's methods is that thebanker's method allows the debt of particular suspensions of work to be paid o�individually whereas the physicist's method considers the debt of the whole datastructure. The idea behind physicist's queues is to make fewer suspensions. Fora strict language such as Standard ML where suspensions are explicit and costly,this may reap some rewards. For a lazy language such as Haskell where everythingis suspended, the physicist's queues are unlikely to be any more e�cient than thebanker's queues.2.1.6 Real-Time QueuesA real-time data structure supports all operations in O(1) worst-case time.Okasaki gives a real-time implementation of queues in [34]. We may derive thisimplementation from the banker's queues by splitting up any monolithic chunksof work into portions taking O(1) time. These portions are spread evenly overevery operation. This allows each operation to run in O(1) time.The only monolithic work suspended by the banker's queues not of O(1)complexity is the reversal of the rear list. This is replaced by the function rotatethat incrementally reverses the rear list onto the back of the front list. A constantportion of the rotation is done each time the queue is updated.2.1.7 Bootstrapped QueuesOkasaki [38] o�ers yet another variation on the banker's queues, this time usingthe principle of data-structural bootstrapping given by Buchsbaum [8]. The basicidea behind bootstrapping is to extend the design of an incomplete or ine�cientdata structure to use smaller instances of the same data structure.Recall that banker's queues reverse the rear list onto the end of the front listevery time the rear list becomes too large. After a series of such reversals, thefront list will look something like this:(� � � ((f++reverse r1)++reverse r2) � � �++reverse rk)As append is linear in its left argument, such a series of appends is rather ex-pensive since some elements are traversed more than once, eg. every element of

www.manaraa.com

2.1. QUEUES 15r1 will be traversed k times. Bootstrapped queues remove this ine�ciency bystoring the collection freverse r1; : : : ; reverse rkg of reversed rear lists separately,and using them to replace the front list as necessary. This does not then requireany applications of append. But how should we store this collection? Noting the�rst-in �rst-out order in which they are inserted and removed, we shall representthis collection as a queue of lists. This is where bootstrapping is used: A queueof lists represents part of a queue. The type of a queue becomes:data Queue a = Empty| Queue [a] (Queue [a]) Int [a] Intwhere Queue f m fmlen r rlen is a queue with front list f, queue m of reversed rearlists, and rear list r; fmlen gives the combined length of f and the lists in m; andrlen gives the length of r. The recursive type requires a base case for termination,so an Empty constructor is introduced.The operations of this implementation run in O(log� n) time1, but a simplealteration improves this complexity to O(1). In practice however, this makeslittle di�erence.2.1.8 Implicit QueuesOkasaki [38] describes another implementation of queues, this time based on theprinciple of recursive slowdown. Kaplan and Tarjan �rst introduced recursiveslowdown in [24]. The key observation underlying the technique arises fromconsidering a bootstrapped data structure (for an example of bootstrapping, seeSection 2.1.7).Suppose an operation on a bootstrapped data structure of size n involves aconstant amount of work plus that of calling the same operation a constant ctimes on nested data structures of combined size f(n). Let T (n) measure thetime taken by this operation. We have:T (n) = O(1) + c T (f(n))If we solve this recurrence relation for c = 1 and f(n) = logn, we �nd thatT = O(log� n). This gives the complexity of the bootstrapped queues of Sec-1log(1) k = log2 k; log(i) = log log(i�1) k (i > 1); log� k = minfij log(i) k � 1g

www.manaraa.com

16 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTStion 2.1.7. If however, we solve the relation for c = 1=2 and f(n) = logn, we�nd that T (n) = O(1). Indeed, for c < 1 and f(n) = n � 1, we still �nd thatT (n) = O(1). But what does performing, say, half an operation mean? Supposewe made sure that only one operation was performed on a nested data structurefor every two operations on the enclosing data structure. This could be seen asperforming half an operation on the nested data structure for every one operationon the enclosing data structure. This is recursive slowdown.To apply recursive slowdown to queues, we shall represent a queue using asmaller inner queue on which we perform one operation for every two operationsperformed on the enclosing queue. If the inner queue is a queue of pairs, we needonly insert or remove a pair every two insertions or removals respectively on theenclosing queue. We will keep at least one element at the front of the enclosingqueue. This ensures that the enclosing queue is ready to perform an operationand that the inner queue is distinctly smaller. This is Okasaki's implementation,and the type of queues is given bydata Queue a = Shallow (ZeroOrOne a)| Deep (OneOrTwo a) (Queue (a,a)) (ZeroOrOne a)data ZeroOrOne a = ZeroInOne | OneInOne adata OneOrTwo a = OneInTwo a | TwoInTwo a aWhereas Kaplan and Tarjan explicitly schedule the work involved in recursivecalls to inner data structures, Okasaki uses lazy evaluation to implicitly schedulethis work, hence the name of this implementation. Data structures using implicitrecursive slowdown are typically a lot simpler than their explicit counterparts,but are amortized rather than worst-case.
2.2 Random-Access SequencesFigure 2.2 speci�es sequences that support access to any element. Table 2.2 listssome implementations.

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 17type RASeq a = [a]empty :: RASeq aempty = []cons :: a! RASeq a! RASeq acons x [x0; : : : ; xn�1] = [x; x0; : : : ; xn�1]head :: RASeq a! ahead [x0; : : : ; xn�1] = x0 (n � 1)tail :: RASeq a! RASeq atail [x0; : : : ; xn�1] = [x1; : : : ; xn�1] (n � 1)snoc :: RASeq a! a! RASeq asnoc [x0; : : : ; xn�1] x = [x0; : : : ; xn�1; x]last :: RASeq a! alast [x0; : : : ; xn�1] = xn�1 (n � 1)init :: RASeq a! RASeq ainit [x0; : : : ; xn�1] = [x0; : : : ; xn�2] (n � 1)lookup :: RASeq a! Int ! RASeq alookup [x0; : : : ; xn�1] i = xi (0 � i � n� 1)update :: RASeq a! Int ! a! RASeq aupdate [x0; : : : ; xn�1] i x = [x0; : : : ; xi�1; x; xi+1; : : : ; xn�1] (0 � i � n� 1)Figure 2.2: Speci�cation of a sequence supporting random-access. For the pur-poses of speci�cation, we treat a random-access sequence as a list.

www.manaraa.com

18 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS
Random-Access SequencesName Lazy Complexities of Operations ReferenceNa��ve Lists - cons/head/tail : O(1),lookup/update: O(i),snoc/last/init : O(n) n/a

ThreadedSkew BinaryLists - cons/head/tail : O(1),lookup: O(min(i; logn)),update: O(i) [29]
BalancedTrees - cons/head/tail : O(logn),lookup/update: O(logn),snoc/last/init : O(logn) [2, 31]
Braun Trees - head : O(1), cons/tail : O(logn),lookup/update: O(log i),snoc/last/init : O(logn) [21]
SlowdownDeques - cons/head/tail : O(1),lookup/update: O(logd),snoc/last/init : O(1) [24]
Skew BinaryLists - cons/head/tail : O(1),lookup/update: O(min(i; logn)) [33]ElevatorLists - cons/head/tail : O(1),lookup/update : O(i) n/a

Table 2.2: Complexities of implementations of sequences supporting random-access, where n is the length of the sequence, i is the index being accessed by alookup or update operation, and d is the distance from the index to the nearest endof the sequence. All complexities are worst-case. None of the implementationsrequire lazy evaluation.

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 192.2.1 Na��ve ListsAn ordinary list provides O(1) access to the front and O(i) access to the ithelement.2.2.2 Threaded Skew Binary ListsMyers [29] extends the ordinary list implementation with an e�cient lookup op-eration, whilst preserving the complexities of the other operations.Myers uses a number system called skew binary that proves very useful inmany data structures [7, 32, 38]. The advantage of this system of representingnumbers is that no more than a single carry is caused by an addition or subtrac-tion of one. Each digit is either 0 or 1, except the least-signi�cant non-zero digit,which is either 1 or 2. The ith digit has weight 2(i+1) � 1 as opposed to the usual2i of ordinary binary numbers. For example,(120)2s = (1� 7 + 2� 3 + 0� 1)10 = (13)10(11111)2s = (31 + 15 + 7 + 3 + 1)10 = (57)10where (x)b is the number given by x under base notation b, with 2s standing forskew binary, 2 for binary and 10 for decimal. With skew binary, addition of oneproduces at most one carry, for example,(120 + 1)2s = (200)2swhereas with binary we could have a cascade of carries,(111 + 1)2 = (1000)2Removing the possibility of such a cascade allows us to perform an addition orsubtraction of one by changing at most two digits, irrespective of the size of thenumber.Myers uses the skew binary number system to add auxiliary pointers to ordi-nary lists. These provide access to elements further down the list. A list of sevenelements [v7; : : : ; v1], with v7 at the front is shown in Figure 2.3. Along withthe value vi of each element in the list, we store the position pos of vi from theend of the list, a pointer next to the next element down from vi, and a pointer

www.manaraa.com

20 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS
[]v1v2v3v4v5v6v7 01210111220100����������������������������- - - - - - -� �W� �W � �W� �W� �W� �W� �? ����-next6jumpvi(pos)2sFigure 2.3: An example of a threaded skew binary list. The empty list is repre-sented by [].jump to an element further down the list with pos equal to j. The value of j isdetermined as follows: take the pos of vi in skew binary, and reduce the least-signi�cant non-zero digit by one. For example, element v6 has pos = (20)2s andhence its jump should point to the element with pos = (10)2s, namely v3. Usingthe jump pointers where possible, lookup now runs in O(min(i; logn)) time.As with ordinary lists, however, update still runs inO(i) time. There is a seriesof pointers to the updated element from every preceding element. Therefore eachof these elements must have their pointers updated.Maintaining the jump pointers can be done in O(1) time as follows. Considera list with head element s. Let the jump of s point to t. Let the jump of t pointto u. To cons an element onto the list, compare the distance between s and t,with the distance between t and u. If the two distances are equal, analogous tothe least signi�cant non-zero digit of a skew binary number being two, we pointjump to u, analogous to carrying one in skew binary. If the two distances are notequal then we point jump to s.For example, consider how the jump of v7 was calculated. At the time v7 wasadded to the list, the head element was v6. The jump of v6 points to v3, andthe jump of v3 points to []. The distance between v6 and v3 is the same as thedistance between v3 and []. Hence the jump of v7 should point to [].Myers uses pointers to describe and implement his data structures, takingexplicit care to ensure that the structures are persistent. With algebraic data-types, the persistent property is enforced and no pointers are mentioned. Thetype of Myers' list would be given in Haskell by:

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 21data RASeq a = Empty| Node a (RASeq a) (RASeq a) IntThe list with head element v, next pointing to the list next, jump pointing tothe list jump, and pos equal to pos would be given by Elem v next jump pos.For example, l7 = Elem v7 Empty l6 7 (with a suitable de�nition of l6, etc.) givesthe list l7 in Figure 2.3.Okasaki [32, 38] gives an implementation of random-access lists that is essen-tially an unthreaded version of Myers' implementation. See Section 2.2.6 for acomparison of these two data structures. Okasaki constructs his lists with alge-braic data-types. Comparing Okasaki's implementation with Myers' illustrateswell how algebraic data-types can provide clarity and insight.Okasaki [32] benchmarks Myers' implementation, improving the code slightlyby maintaining the di�erence between the pos of an element and the pos of theelement to which jump points. This value is called the rank of an element. Thepos of each element is no longer maintained and the calculation of the jumpinvolved in an application of cons is now simpler and more e�cient. Appendix Agives this improved implementation.2.2.3 Balanced TreesVarious forms of balanced tree may be used to implement a random-access se-quence. Most of these implementations o�er O(logn) access to any element.Braun trees are a notable exception and o�er improved access to the front ofthe sequence whilst maintaining logarithmic access to any element as an upperbound. They are therefore treated separately in Section 2.2.4.AVL trees [3, 31] are straightforward but tedious to implement. Okasakiuses an implementation adapted speci�cally for random-access lists in [33]. Ap-pendix A gives this implementation.Adams [2] provides an alternative in the form of BB-trees. Adams' implemen-tation seems to be quite widely used, so we shall look at it below. Other forms ofbalanced trees are documented well in imperative literature and most translateacross easily to the purely functional or persistent worlds.

www.manaraa.com

22 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSAdams gives an implementation of sets using BB-trees, which we describebelow. The modi�cations required for implementing random-access sequencesare minor (see the code in Appendix A).BB-TreesAdams represents a BB-tree as follows:data Set a = Empty| Branch Int (Set a) a (Set a)For a non-empty tree Branch n l x r, we have:� A node containing an element x and the number n of elements in the tree� The left subtree l� The right subtree rThe elements are stored in symmetric order; that is, given any non-empty subtreeBranch n l x r, every element in the tree l is less than or equal to x, and xis less than or equal to every element in the tree r. The following balancinginvariant is maintained:Given a subtree Branch n l x r containing more than two elements,neither l nor r has more than � times the number of elements of theother.To restore the balance of a tree after adding or removing an element, whilstmaintaining the order of elements, we need to perform rotations. Figure 2.4shows the four forms of rotation required and Figure 2.5 shows the correspondingcode. Note that the trees are constructed using the function branch, not thedata constructor Branch, and that branch does not take size as an argument.The function branch calculates the size of the tree from the sizes of the left andright subtrees. This avoids unnecessarily verbose code produced by calculatingthe size separately each time a tree is constructed (as would be necessary ifBranch was used directly). Adams calls these functions smart constructors. Twofurther smart constructors are given:

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 23����xBBBB����l��� @@����yBBBB����rl BBBB����rr

 JJJ ����y������xBBBB����l

 JJJ BBBB����rl @@@ BBBB����rr
����xBBBB����l��� ����zZZZ����y

BBBB����rll

 BBBB����rlrJJJ BBBB����rr@@@

����y�������x ZZZ����zBBBB����l

 BBBB����rllJJJ BBBB����rlr

 BBBB����rrJJJ
����y�������x ZZZ����zBBBB����ll

 BBBB����lrlJJJ BBBB����lrr

 BBBB����rJJJ

����z BBBB����r@@@����x �������yJJBBBB����lrl

 BBBB����lrrJJJBBBB����ll���

-Single Left�Single Right
-Double Left

-Double Right
Figure 2.4: Rotations of a binary tree.� balBranch, which constructs a balanced tree from a previously balancedtree that has had at most one element deleted or added to one of its subtrees,both of which are assumed to be now balanced� concat3, which constructs a balanced tree from a node and two subtreesof arbitrary sizeAdding or removing a single element to or from a subtree may require arotation to restore the balancing invariant. An unbalanced tree with a large leftor right subtree requires a right or left rotation respectively. Let's suppose thatthe right subtree r is too large.

www.manaraa.com

24 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSbranch :: Set a -> a -> Set a -> Set abranch l x r = Branch (1 + size l + size r) l x rsize Empty = 0size (Branch n l x r) = nsingleL l x (Branch _ rl y rr) = branch (branch l x rl) y rrsingleR (Branch _ l x rl) y rr = branch l x (branch rl y rr)doubleL l x (Branch _ (Branch _ rll y rlr) z rr) =branch (branch l x rll) y (branch rlr z rr)doubleR (Branch _ ll x (Branch _ lrl y lrr)) z r =branch (branch ll x lrl) y (branch lrr z r)Figure 2.5: Rotating binary trees.� If the left subtree rl of r is smaller than some constant � times the rightsubtree rr, then we move rl across to the left subtree l of the main tree totry to restore the balancing invariant whilst preserving the order. This isa single left rotation|see Figure 2.4. The rotation also shifts elements xand y round to preserve order.� If the right subtree rl of r is larger than � times the right subtree rr, thenwe move only part of rl to restore the balancing invariant. We move theleft subtree rll of rl across to the main left subtree l whilst preserving theorder of elements|this is what a double left rotation does, see Figure 2.4.The case of the left subtree l being too large is treated symmetrically. Theabove algorithm can be seen in the code for balBranch in Figure 2.6. Thefunction concat3 simply traverses the tree, restoring balance as necessary bycalling balBranch.In a technical report [1], Adams investigates what values of � and � are suf-�cient for the algorithm above to maintain the balancing invariant. He producesa graph of suitable combinations of � and �. As used in Figure 2.6, � = 5 and� = 2 is one such suitable combination. However, in [2] Adams gives code with

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 25sigma :: Intsigma = 5alpha :: Intalpha = 2balBranch :: Set a -> a -> Set a -> Set abalBranch l x r| sizeL + sizeR < 2 = branch l x r| sizeR > sigma * sizeL =let (Branch _ rl _ rr) = rin if size rl < (size rr) * alphathen singleL l x relse doubleL l x r| sizeL > sigma * sizeR =let (Branch _ ll _ lr) = lin if size lr < (size ll) * alphathen singleR l x relse doubleR l x r| otherwise = branch l x rwhere sizeL = size lsizeR = size rconcat3 :: Ord a => Set a -> a -> Set a -> Set aconcat3 Empty x r = add x rconcat3 l x Empty = add x lconcat3 l@(Branch nl ll x lr) y r@(Branch nr rl z rr)| sizeRatio * nl < nr = balBranch (concat3 l y rl) z rr| sizeRatio * nr < nl = balBranch ll x (concat3 lr y r)| otherwise = branch l y rFigure 2.6: Smart constructors of balanced trees.

www.manaraa.com

26 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS� = 5 and � = 1, which is not suitable. One suspects that the proportion ofunbalanced trees is low and the cost of ensuring all trees are balanced is greaterthan the cost taken to navigate the occasional unbalanced tree. However, Adamsdoes not mention this.Consider the operation add that adds an element to a set. The operation adddescends the tree by recursively calling itself to add the element at the correctposition (or returning the tree if the element is present already). As it does so,it may unbalance the tree at each of the nodes lying on its path to the addedelement's �nal position. The balancing smart constructor balBranch is designedspeci�cally to handle this case by assuming that only a single element has beenadded or removed since the tree was last in a balanced state and that all subtreesof the two trees it joins are balanced.add :: Ord a => a -> Set a -> Set aadd x Empty = singleton xadd x t@(Branch _ l y r) | x < y = balBranch (add x l) y r| y < x = balBranch l y (add x r)| otherwise = tOther set operations are de�ned similarly.2.2.4 Braun TreesHoogerwoord [21] uses Braun trees [6] to implement exible arrays. Braun treeshave the following properties:� For any node of a Braun tree with left subtree l and right subtree r,jrj � jlj � jrj+ 1.� The size of a Braun tree determines its structure exactly.� Every Braun tree is of minimum height.Consider the in�nite tree of Figure 2.7. Now consider the subtree formed byremoving all nodes bar those labelled with numbers in the range [0::n�1] inclusive.This is the Braun tree of size n. For examples of Braun trees, see Figure 2.8. Thepattern of how the nodes are labelled is best illustrated by the lookup operation.

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 2701 23 45 67 89 1011 1213 14Figure 2.7: The in�nite Braun tree.
Figure 2.8: The Braun trees of size four, nine and seven.To lookup the nth element of Braun tree T with left subtree l and right subtreer, use the following rules:� If n = 0, then return the root element of T .� If n is even, then return the ((n=2)� 1)th element of r.� Otherwise, n is odd, so return the ((n� 1)=2)th element of l.The update operation is de�ned similarly. As every Braun tree is of minimumheight, these operations run in O(logn) time. Treating the trees as lists, it ispossible to de�ne cons and tail to run in O(logn) time, and head in O(1) time.Hoogerwoord implements exible arrays, whereas we want random-accesslists|we shall now explain the di�erence. When an element is added or re-moved from the front of a random-access list, the positions of the other ele-ments in the list shift. If instead positions remain �xed, we have a exiblearray. For example, consider applying cons to the list l1 = [0; : : : ; n] to givethe list l2 = [�1; 0; : : : ; n]. Both a random-access list and a exible array givelookup l1 i = i. However, a random-access list gives lookup l2 i = i� 1, whereasa exible array gives lookup l2 i = i. It is simple to extend an implementation

www.manaraa.com

28 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSof a random-access list to give exible array behaviour, and vice versa. The al-gorithm we have described above, and the code in Appendix A, both implementrandom-access lists.2.2.5 Slowdown DequesKaplan and Tarjan [24] introduce the technique of recursive slowdown and useit to implement many data structures, including double-ended queues (deques).Section 2.1.8 gives a brief explanation of recursive slowdown. The deques canalso be made to support random access.A deque is represented by a pre�x of up to �ve elements, an inner centraldeque of pairs of elements, and a su�x of up to �ve elements. A large dequeis therefore made up of many deques nested within each other. The outermostlevel contains simple elements in its pre�x and su�x, the second level pairs ofelements, the third level pairs of pairs of elements, etc. As with the implicitqueues of Section 2.1.8, we make sure that an operation on the inner deque takesplace every two operations on the outer deque. To do this, we need to makesure that the pre�x and su�x are kept close to being half full to avoid cascadesof operations on nested deques. Kaplan and Tarjan introduce a colour schemeto identify pre�xes and su�xes with dangerously few or many elements: red forzero or �ve elements, yellow for one or four elements, and green for two or threeelements. A deque is coloured according to the most dangerous colour of its pre�xor su�x. The following invariant is then maintained:There is a green deque outside of the outermost red deque. There isalso a green deque between any two red deques.This ensures that the outermost deque is always in a state ready to accept a newelement or to give up a current element. The details of how to juggle the pre�xesand su�xes to maintain this invariant are complex and not given here. Main-taining the invariant may require performing an operation on the inner deque.However, an operation on the inner deque is only necessary if the outer deque isred. The invariant ensures that when the outer deque is red, the inner deque isnot red, hence preventing a cascade of operations on nested inner deques. Theinvariant can be maintained with a constant amount of work per operation. As

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 29the invariant guarantees that the deque is ready to perform an operation in O(1)time, this proves that the deque allows operations on either end to run in O(1)worst-case time.The operations lookup and update are implemented by descending the seriesof nested deques till we reach the pre�x or su�x in which the element is stored.If the element is at most d positions from the nearest end of the deque, then theelement is at O(log d) depth since the number of elements stored in each levelgrows exponentially. As the second level contains pairs of elements, the third levelpairs of pairs of elements, and so on, we have to descend this tree-like structureto reach the element. As this tree is also O(log d) deep, the complexity of lookupand update is O(log d).2.2.6 Skew Binary ListsOkasaki [32] notes that complete binary trees are a good structure to use forrandom-access, allowing access and update to any node in O(logn) time. How-ever, these trees are only found in sizes of the form 2k�1 so the problem remainsof how to store lists of arbitrary size. The skew binary number system of Sec-tion 2.2.2 once more comes to our aid. Recalling that the ith digit represents2i � 1, this number system is ideal for implementing a list of n elements as acollection of complete binary trees according to the representation of n in skewbinary (see Figure 2.9). Importantly, the addition or removal of an element in-volved in the cons and tail operations is also dealt with in O(1) time thanksto the main property of skew binary numbers: addition or subtraction of oneproduces at most one carry.The importance of cheap access to the front of the list for cons, head and tailsuggests we order the trees by size, smallest �rst, and order the elements withleft-to-right pre-order.By analogy with skew binary addition and subtraction, cons and tail areimplemented as follows:� To cons an element onto a list, check if the two smallest trees are the samesize. If not, add the new element as a singleton tree. Otherwise, create alarger complete binary tree with the new element as root and the two trees

www.manaraa.com

30 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS������������v1v2 v3��� AAA ������������v4v5 v6��� AAA ������������v8v9 v10��� AAA ������������v11v12 v13��� AAA
����v7��� @@@

Figure 2.9: A list [v1; : : : ; v13] represented as a collection of complete binary trees.Number of nodes = (13)10 = 1� (23 � 1) + 2� (22 � 1) + 0� (21 � 1) = (120)2s,therefore we have one complete binary tree of depth three, two of depth two andnone of depth one.as children|this preserves the ordering and the skew binary form.� To take the tail of a list, simply remove the leading singleton tree if oneexists. If not, remove the root of the smallest tree and return both itschildren to the collection.These operations are illustrated in Figure 2.10.The operation head is easy to implement in O(1) time. Similarly, lookup andupdate are reasonably simple to implement if the size of the tree rooted at eachnode is stored in the node.The string representing the number n in the skew binary number system isO(logn) long. A list of length n is therefore represented by a collection of O(logn)trees. The largest tree in a list of length n is also O(logn) deep. The operationslookup and update traverse the list till the tree containing the desired elementis found. This tree is then descended to reach the element. Hence update andlookup each take O(logn) time. Upon further examination, we can improve thiscomplexity to O(minfi; logng) in the worst case and O(log i) in the expectedcase, when indexing the ith element.Parallels can be drawn between Okasaki's lists and Myers' lists (see Sec-tion 2.2.2). There are many redundant pointers in Myers' representation, causingupdate to be less e�cient, running in O(i) time. The shortest path from the headof the list to any element never uses any of these pointers. By removing them, one

www.manaraa.com

2.2. RANDOM-ACCESS SEQUENCES 31i��� AAAT1 i���� AAAAT2i i��� AAAT1 i���� AAAAT2
cons ? 6tail

jT1j < jT2j i��� AAAT1 i��� AAAT2
ii��� AAAT1�� i��� AAAT2@@cons ? 6tail

jT1j = jT2j

Figure 2.10: The e�ect of cons and tail acting on a list represented by a collectionof complete binary trees with the smallest two being T1 and T2.obtains a structure isomorphic to the same list represented with Okasaki's struc-ture (see Figure 2.11). One can therefore view Okasaki's work as an improvementof Myers' work to gain a more e�cient update.Alternatively, one may view Myers' lists as threaded versions of Okasaki'slists. A tree is threaded when every node contains a pointer to the next elementwith respect to some traversal order|left-to-right pre-order in this case. Thiscan be seen in Figure 2.11. For example, node v3 contains a pointer to node v6.However, for every case where searching through a Myers' list would follow sucha pointer, the search in the equivalent list of Okasaki would have followed at leastone fewer pointer. For example, the search for v6 in Okasaki's list moves from v2directly to v6; the search for v6 in Myers' list moves from v2 to v6 via v3.2.2.7 Elevator ListsPreliminary benchmarking results of the implementations of random-access se-quences show that the na��ve implementation often wins for small lists, and someform of tree wins for large lists. We design an implementation of random-accesssequences that is a hybrid of the simple list and the structured tree.An elevator list is a simple list of oors. Each oor is itself a simple list.data List a = Floor Int [a] (List a)

www.manaraa.com

32 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS(a) []v8v7v6v5v4v3v2v1��������������������������������- - - - - - - -� �W � �W� �W � �W� �W� �W� �W� �?
(b) ������������v3v4 v5��� AAA ������������v6v7 v8��� AAA

����v2��� @@@����v1 (c) ������������v3v4 v5���� - ������������v6v7 v8���� -
����v2���	 -����v1 -

Figure 2.11: A list [v1; : : : ; v8] represented (a) by Myers' random-access list, (b)by Okasaki's random-access list, and (c) by Myers' list with redundant pointersremoved. Note the similarity between (b) and (c).
We label each oor with its size. There is a �xed \separation" between oors:When the top oor becomes larger than a �xed size, a new oor is built on top.Ordinary list operations act directly on the top oor. Random-access oper-ations �rst descend to the correct oor, by subtracting the oor sizes from theindex, till the index is less than the oor size, and then use ordinary list lookupand update on this oor.We represent an empty list by a circular list of empty oors.empty = Floor 0 [] emptyFor further details, see the code in Appendix A.
2.3 HeapsPriority queues, or heaps, support an ordered collection of elements. A spec-i�cation is given in Figure 2.12. A table of implementations can be found atTable 2.3.

www.manaraa.com

2.3. HEAPS 33

type Ord a) Heap a =�a�empty :: Ord a) Heap aempty =��insert :: Ord a) a! Heap a! Heap ainsert x h =�x� [hmerge :: Ord a) Heap a! Heap a! Heap amerge h1 h2 = h1 [h2�ndMin :: Ord a) Heap a! a�ndMin h = x ^ x 2 h ^ 8y 2 h � x � y (h 6=��)deleteMin :: Ord a) Heap a! Heap adeleteMin h = h� ��ndMin h� (h 6=��)Figure 2.12: Heap speci�cation. A bag is delimited with ��, [is bag union,and � is bag di�erence.

www.manaraa.com

34 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS
HeapsName Lazy Complexities of Operations ReferenceNa��ve - insert/merge: O(n)�ndMin/deleteMin: O(1) n/aBinomial - insert/merge: O(logn)�ndMin/deleteMin: O(logn) [38]Skew Binomial - insert : O(1), merge: O(logn)�ndMin/deleteMin: O(logn) [7]BootstrappedSkew Binomial - insert/merge: O(1)�ndMin: O(1), deleteMin: O(logn) [7]Pairing - insert/merge: O(1)�ndMin: O(1), deleteMin: O(logn) [35]Leftist - insert/merge: O(logn)�ndMin: O(1), deleteMin: O(logn) [31]Splay - insert : O(logn)z, merge: O(n)z�ndMin/deleteMin: O(logn)z [38]

Table 2.3: Complexities of implementations of heaps (priority queues), wheren is the size of the heap (the resulting heap in the case of merge). Complexi-ties marked with z are amortized under single-threaded use. The complexity ofdeleteMin for pairing heaps is only a conjecture for single-threaded amortizeduse; this bound has also been conjectured for a persistent version of pairingheaps under amortized persistent use. If lazy evaluation is used, the complexityof insert for binomial heaps becomes O(1) amortized. All other complexities areworst-case and none of the implementations require lazy evaluation.

www.manaraa.com

2.3. HEAPS 35B0 B1 B2 B3i i?i i?ii?i
����	 i?ii?i

����	
i?ii?i

����	 ���������
Figure 2.13: The �rst four binomial trees.

2.3.1 Na��ve HeapsAn ordered list implements a heap with �ndMin and deleteMin running in O(1)time, and insert and merge running in O(n) time.2.3.2 Binomial HeapsVuillemin presents binomial queues in [51] with every operation running inO(logn) time. Okasaki [38] preserves this complexity in a purely functional set-ting. To avoid confusion with ordinary queues, we shall refer to binomial queuesas binomial heaps.Binomial TreesThe size of a binomial tree determines its shape exactly: the �rst four are shownin Figure 2.13. Figure 2.14 shows two equivalent de�nitions of the binomial treeBn. The binomial tree Bi has 2i nodes, iCj of which are at depth j, whereiCj = i!(i� j)!=j! gives the number of ways of choosing j items from a collectionof i items, disregarding order of choice. The name binomial derives from theco-e�cient of the ith term of a binomial expansion (x+ y)n being given by n�iCi.Given an ordering of elements, a tree is heap-ordered if for every node n withparent m, the element stored at n is no smaller than the element stored at m.

www.manaraa.com

36 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSBniBn�1 � � � B1 B0����������) ���	 ? ��� @@@Bn�1��� @@@Bn�1
Bn���������)

Figure 2.14: Equivalent forms of the binomial tree Bn.
i?ii?i

����	 i1857
4

Figure 2.15: An example of a binomial heap: [B2; B0]. There is no B1 tree andits absence is indicated by a vertical dash.A binomial heap is a list of heap-ordered binomial trees: [Bi0 ; Bi1; : : : ; Bin] withi0 < i1 < � � � < in. The size of a binomial heap determines its structure exactly.The binomial tree Bi appears in a binomial heap either once or not at all. Anexample of a binomial heap can be seen in Figure 2.15.A useful property of binomial heaps is that the binary representation of thenumber of nodes within the heap corresponds exactly with the heap representa-tion. For example, the heap in Figure 2.15 has �ve nodes and its binary equivalentis indeed the number �ve: \1 B2, 0 B1 and 1 B0" giving \101". The length ofthe binary representation of the number n is O(logn). Hence a binomial heap ofn elements is a list of length O(logn).Operations on Binomial HeapsAn example of a merge can be seen in Figure 2.16. Merging binomial heaps isstrongly analogous to binary addition. Trees or digits of equal weight are added

www.manaraa.com

2.3. HEAPS 37i?i i18 4i?i57i?ii?i
����	 i1857

4merge
1
1

1
0

1 0 1+
Figure 2.16: A merge of two binomial heaps and the corresponding binary addi-tion.together to produce a tree or digit of the next heaviest weight. Two binomialtrees of equal weight are added together by making the tree with the larger rootthe leftmost child of the other tree.The operation �ndMin simply scans the roots of the binomial trees to beadded. The other operations are de�ned in terms of merge: deleteMin q scansfor the minimum root, removes it, and merges its children with the remainder ofq (the children of the root of a binomial tree always form a binomial heap, ascan be seen in Figure 2.14); insert i q simply merges q with the singleton queuecontaining i. As there are O(logn) binomial trees in a binomial heap of size n,each operation takes O(logn) time.2.3.3 Skew Binomial HeapsBrodal and Okasaki [7] adapt the binomial heap implementation to use skew bi-nary arithmetic (see Section 2.2.2) in place of ordinary binary arithmetic. Recallthat the addition or subtraction of one takes O(1) time using the skew binarynumber system. In the case of heaps, this allows insert to run in O(1) time. The

www.manaraa.com

38 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSother operations maintain their O(logn) complexity.A skew binomial heap is a list of skew binomial trees. Unfortunately, skewbinomial trees are not as neat as their binomial counterparts. This is becausewe must use some form of addition to implement merge. Skew binary additionis rather awkward in general and so we choose to use ordinary binary addition.The conict between using skew binary addition to implement insert and ordinarybinary addition to implement merge reduces the elegance of the implementation.However, making insert run in O(1) time allows heaps of optimal complexity tobe built|see Section 2.3.4.2.3.4 Bootstrapped Skew Binomial HeapsBrodal and Okasaki [7], after adding the skew binary number system to binomialheaps, add yet another feature: bootstrapping (see Section 2.1.7). This givesheaps of optimal complexity: deleteMin runs in O(logn) time and �ndMin, insertand merge run in O(1) time. It is easy to show these bounds are optimal usingthe
(n logn) bound on sorting n items.Recall that bootstrapping extends the design of an incomplete or ine�cientdata structure by using smaller instances of the same data structure. We shalllet heaps contain other heaps as elements. This allows merge to be implementedby the more e�cient insert.Suppose we import a heap implementation that runs insert in O(1) time.In the Haskell notation, let the type of these heaps be given by Old.Heap a.We wish to create bootstrapped heaps that can contain other heaps. We mightconsider the type:data Heap a = Heap (Old.Heap (Old.Heap a))Here we have applied a single level of bootstrapping. But the top-level heapcontains elements of type Old.Heap a. These old heaps contain simple elementsof type a, and so we cannot insert heaps into them; we need to be able to insertheaps at an arbitrary depth of nesting. We need a recursive de�nition:data Heap a = Heap (Old.Heap (Heap a))

www.manaraa.com

2.3. HEAPS 39However, we do not have anywhere to store the simple elements of type a withthis de�nition. So instead we store the minimum element at the root as follows:data Heap a = Empty| Root a (Old.Heap (Heap a))The old heap implementation will require an ordering of its elements: boot-strapped heaps in this case. This is given by an ordering of the roots.As bootstrapped heaps are old heaps of bootstrapped heaps, we can mergetwo bootstrapped heaps by using Old.insert to insert one into the other. AsOld.insert is O(1), merge is O(1). We can de�ne insert in terms of merge asusual, and so insert is still O(1). The operation �ndMin simply looks at theroot. The operation deleteMin is implemented in terms ofOld.merge, Old.�ndMinand Old.deleteMin and therefore remains O(logn) (assuming that the old heapsimplement these operations in O(logn) time).2.3.5 Pairing HeapsOkasaki [35] presents a functional translation of pairing heaps which were �rstdescribed by Fredman, Sedgewick, Sleator, and Tarjan [15]. A heap is representedby a heap-ordered multi-way tree:data Heap a = Empty| Node a [Heap a]The operation �ndMin simply looks at the root. Two heaps are merged by makingthe heap with the largest root the leftmost child of the other heap. An elementis inserted by merging with a heap containing the single element. Pairing heapsderive their name from the implementation of deleteMin: the root is removedand the children are combined in two passes. The �rst pass working left-to-rightmerges successive pairs of children together. The second pass working right-to-leftmerges the results of the �rst pass into one heap.Although pairing heaps are quite well-known, no one has established tightbounds on their complexity. It is clear that all operations beside deleteMin runin O(1) time. In an ephemeral setting, it has been conjectured that deleteMinruns in O(logn) amortized time. In a persistent setting however, the above

www.manaraa.com

40 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTSimplementation certainly does not meet these bounds. Consider successivelyinserting the elements 0; 1; : : : ; n into an empty heap. The result will be a heapwith root 0 and children [n; : : : ; 1]. Now perform deleteMin on the same heap mtimes. Each deleteMin will repeat the same work taking O(n) time each. Theamortized cost of deleteMin is therefore O(n) in a persistent setting.Okasaki [35] also presents a persistent version of pairing heaps using lazy eval-uation, which should not be subject to a similar refutation of O(logn) amortizedcomplexity. However, as with their ephemeral counterparts, a proof is not known.Appendix A gives the ephemeral version.
2.3.6 Leftist HeapsA leftist heap [25] is a heap-ordered binary tree satisfying the leftist property :The r-height of every left child is greater than or equal to the r-heightof its right sibling.The r-height of a binary tree is the number of internal nodes on the path from theroot to the rightmost external node|this path is called the right spine. One mayprove by induction that the r-height of any leftist heap of size n > 0 is boundedabove by log2 n+ 1.Leftist heaps are an example of a data structure that translates across easilyfrom the imperative to the persistent or functional world. N�u~nez et al. present afunctional implementation in [31].To merge two leftist heaps, view their right spines as ordered lists. Mergingthese ordered lists ensures the resulting tree is heap-ordered. This constructsthe right-spine from top to bottom. On the way back up, the leftist propertyis preserved by making the child with the largest r-height the left child. Aseach pass runs in time proportional to the combined length of the right spinesof the arguments of merge, the operation runs in O(logn) time. The remainingoperations are straightforward.

www.manaraa.com

2.4. SUMMARY 412.3.7 Splay HeapsOkasaki [38] presents an implementation of heaps using splay trees [49]. A splaytree is a binary tree that does not maintain any balance information but con-sistently re-structures itself in a manner that tends to balance the tree. Forexample, as the elements are stored in symmetric order, the deleteMin operationmust remove the leftmost node. After this node is removed, the leftmost path isascended, re-structuring the tree as it does so by shifting elements from left sub-trees over to right subtrees. This tends to shorten the leftmost path, improvingthe time taken for subsequent applications of deleteMin.To insert a node x, the tree is split into nodes smaller than x, and nodes largerthan x. These subtrees then form the left and right children of x respectively.As the tree is split, it is once again re-structured: if x splits the tree somewherein the left subtree of the root, then elements are moved over to the right subtreeand vice versa. This tends to balance the tree.The operation �ndMin simply �nds the leftmost node. This takes O(logn)time. If every application of deleteMin is accompanied by at most one applicationof �ndMin, as is often the case, we may amortize the cost of �ndMin to O(1).Otherwise, we may store the minimum element separately from the tree. Thismay be done without increasing the complexity of the other operations. As thiscauses more work, this is only advisable when �ndMin is called often.2.4 SummaryThis chapter shows there are many ways to implement the same adt. But whichimplementation is best? Does it depend on how we use the data structure?Calculating the complexities of the operations gives us a theoretical answer, butempirical performance may give a di�erent picture.Therefore, after developing the benchmarking procedures motivated in Sec-tion 1.3, we benchmark all of the implementations of this chapter in Chapter 7.

www.manaraa.com

42 CHAPTER 2. IMPLEMENTATIONS OF THREE ADTS

www.manaraa.com

Chapter 3
Datatype Usage Graphs
In Section 1.3 we identi�ed a need to qualify the performance of a data structureby how it is used. We can do this by creating benchmarks whose use of the datastructure is well-de�ned. This information is useless unless we can �nd out how anapplication uses a data structure. This chapter outlines a theoretical frameworkfor (a) creating a benchmark from a description of use, and for (b) creating adescription of use from an application. Chapter 6 builds on this framework toprovide a practical tool to do both (a) and (b).The adt framework has a solid basis of literature [52] and is very convenientfor abstracting over many data structures|an adt abstracts over many datastructures implementing the same operations. We shall therefore insist on everydata structure we deal with being an implementation of some adt.The ambiguity of the phrase \how an adt is used" presents an obstacle. With-out an exact de�nition of this property, we would �nd it hard to talk about thee�ciency of an implementation of an adt according to how it is used, or indeedabout how a particular application uses an adt. Consider the two applicationsof queues in Figure 3.1 (see Section 2.1 for a de�nition of queues). Inspecting thecode for each application allows us to see what operations are being performed,in what order, and how the result of one operation may rely on the result ofanother. But the task is by no means straightforward. With more complicatedapplications, the task would become extremely di�cult. We need a simple recordof how an adt is used by an application.We use a labelled directed graph. See Figure 3.2 for examples that describe43

www.manaraa.com

44 CHAPTER 3. DATATYPE USAGE GRAPHSapply :: Int -> (a -> a) -> a -> aapply n f q = (iterate f q) !! nsnocTrue :: Queue Bool -> Queue BoolsnocTrue q = snoc q Trueapp1 :: Int -> Boolapp1 n = (head . apply (n-1) tail . apply n snocTrue) emptyapp2 :: Int -> Boolapp2 n = (and . map (head . tail) . take n . repeat) nSnocswhere nSnocs = apply n snocTrue emptyFigure 3.1: Two arti�cial simple applications of queues: app1 and app2. Notethat app2 uses a where clause to share the value of nSnocs.how the queue adt is used by the two applications of Figure 3.1. The nodesare labelled with partially applied operations of the adt, with the remainingarguments supplied by the arcs. There is an arc from u to v if the result of theoperation at u is taken as an argument by the operation at v. The nodes arenumbered according to the order of evaluation. Such a graph is a datatype usagegraph (dug). We shall make the de�nition of a dug precise in the followingsection.A dug is closely related to both an execution trace [38] and a version graph[13]. An execution trace without cycles and with every operation returning asingle result is a dug. A dug with every operation returning an adt value is aversion graph. Execution traces have been used as a model on which to explainpersistent amortized complexity via lazy evaluation [38]. Version graphs havebeen used to explain the design of persistent data structures [12, 13, 40].During the run of an application, many di�erent instances of an adt willexist. For example, whilst running queue application app1 there will exist atsome time an empty queue, a queue containing just True, a queue containing two

www.manaraa.com

45

app1: 0 1 � � � nn+1 � � � 2n-12n
Node Operation0 empty1 : : : n �l � snoc l Truen+ 1 : : : 2n� 1 �l � tail l2n �l � head lapp2: 0 1 � � � n n+1n+23n-13n

... Node Operation0 empty1 : : : n �l � snoc l Truen + 1 �l � tail ln + 2 �l � head l... ...3n� 1 �l � tail l3n �l � head lFigure 3.2: Graphs showing how the queue adt is used by the di�erent appli-cations given in Figure 3.1. Note that node n of app2 corresponds to the valuenSnocs shared by n applications of tail.

www.manaraa.com

46 CHAPTER 3. DATATYPE USAGE GRAPHScopies of True, and so on. Each of these particular instances of the adt is calleda version [38] (as de�ned in Section 1.4). A node of a dug is called a versionnode if it is labelled with an operation that results in a version. The subgraphof a dug containing just the version nodes is called the version graph. This isconsistent with the de�nition of a version graph given by Driscoll et al. [13].The rest of this chapter is organised as follows. Section 3.1 de�nes a dugprecisely. Section 3.2 de�nes the evaluation of a dug, e�ectively creating abenchmark. Section 3.3 de�nes a pro�le of a dug, summarising the main char-acteristics. Section 3.4 de�nes a shadow data structure, useful for creating a dugthat matches a given pro�le, and for adding information to a pro�le.3.1 De�nitionWe should �rst de�ne what we mean by an adt. An adt provides operationsto create, manipulate, and observe values of some new type. The only way tointeract with values of this type is through the adt operations. This allows theimplementation of the adt to be removed from its use|we may exchange imple-mentations without changing how we use the adt. We have therefore abstractedaway from the implementation.We shall restrict ourselves to container types, that is, adts that contain ele-ments of some other type. For example, a list adt allows lists of integers, listsof characters, etc. For any such adt, we may consider the adt as de�ning atype constructor T . For example, a list adt may be taken as de�ning a typeconstructor List taking a type t to the type List t. A list of integers would thenhave the type List Int. We shall restrict T to be unary. Most common adtssatisfy these restrictions.De�nition 3.1 (adt)For any type constructor T , and any set of functions F , the pair (T; F) isan adt if the following are satis�ed:� T is unary.� Each function in F takes at least one argument of type T a, or returnsa result of type T a, where a is a type variable.

www.manaraa.com

3.1. DEFINITION 47For the sake of simplicity we shall further restrict the adts considered by givingthe following de�nitions.De�nition 3.2 (Simple Type)For any type constructor T of arity one, we say that the type t is simpleover T if t� Can be formed as type by the grammartype ::= argument type ! type j result typeargument type ::= T a j a j Intresult type ::= T a j a j Int j Boolwhere a is a type variable� Contains at least one occurrence of T aWe shall abbreviate this to saying that t is simple where the context makesit unambiguous over which type constructor t is simple.Example 3.2The following types are simple over the type constructors Queue, List andSet respectively:� Queue a ! a ! Queue a� List a ! Int ! a� Set aThe following are not simple over any type constructor:� List a ! Queue a� (a ! a)! List a ! List a� aDe�nition 3.3 (Simple adt)We de�ne the adt A = (T; ff1; : : : ; fng) to be simple if the type of eachoperation fi is simple.

www.manaraa.com

48 CHAPTER 3. DATATYPE USAGE GRAPHSmodule List (List,empty,catenate,cons,tail,head,lookup,isEmpty)whereempty :: List acatenate :: List a -> List a -> List acons :: a -> List a -> List atail :: List a -> List ahead :: List a -> alookup :: List a -> Int -> aisEmpty :: List a -> BoolFigure 3.3: Haskell code giving the signature of a simple list adt AList providingnormal list operations, catenation and indexing. The exported type constructoris List. The type of each operation is simple over List.Example 3.3The signature of a simple adt AList is given in Figure 3.3.Many adts are simple: queues, deques, lists, random-access sequences, heaps,sets, integer �nite maps, etc. However, any higher-order operations such as map,or any operations converting from one data structure to another such as fromList,need to be excluded.When talking about dugs we shall �nd it useful to classify the operationsaccording to the di�erent roles they play. We therefore make the following de�-nition.De�nition 3.4 (Generator,Mutator, Observer, Role, VersionArity)For any operation f of type t, where t is of the formt = t1 ! t2 ! � � � ! tmand is simple over the type constructor T , f is classi�ed as follows:Generator If tm = T a and (8j; 1 � j < m) tj 6= T aMutator If tm = T a and (9j; 1 � j < m) tj = T aObserver If tm 6= T a and (9j; 1 � j < m) tj = T a

www.manaraa.com

3.1. DEFINITION 49Note that the categorisation is complete and any operation of simple typeis exactly one of: generator, mutator or observer. This is called the roleof the operation. We de�ne the version arity of an operation to be thenumber of version arguments taken by that operation. Therefore, everygenerator has version arity 0, and every mutator and observer has versionarity greater than or equal to 1.Example 3.4Looking at the signature of the simple adt AList in Figure 3.3, empty isa generator; catenate, cons and tail are mutators; head, lookup andisEmpty are observers. Every mutator and observer has version arity 1,apart from catenate, which has version arity 2.Look at the dugs in Figure 3.2. The label attached to a dug node is a partialapplication of an adt operation. For simplicity, the arguments used to partiallyapply the operation are restricted to atomic values|nested function applicationsare not allowed. The remaining arguments are supplied by the arcs. We shallnow de�ne the functions that label dug nodes.De�nition 3.5 (Partial Application, Pap(A))Given a simple adt A = (T; ff1; : : : ; fng), a partial application of fi is anyfunction of the following form:�x1 � �x2 � : : : � �xk � fi a1 a2 : : : am; 0 � k � mHere, m is the arity of fi, each xj occurs exactly once in the sequence[a1; : : : ; am], and every other element of this sequence is an atomic value.To avoid duplication, we further insist that x1, . . . , xk occur in order inthe sequence [a1; : : : ; am], that is, xj1 occurs before xj2 for j1 < j2. The setof all partial applications of any function of a simple adt A is denoted byPap(A).Example 3.5For the list adt AList , whose signature is given in Figure 3.3, the followingfunctions are in Pap(AList):

www.manaraa.com

50 CHAPTER 3. DATATYPE USAGE GRAPHS� �l � cons 'a' l� empty� �l1 � �l2 � catenate l1 l2Whereas, the following functions are not:� �l � catenate l l� �l1 � �l2 � catenate l2 l1� �l1 � �l2 � cons (lookup l1 2) l2We may use a partial application to assign a role to a node: For a node v labelledwith a partial application of the operation f , the role of v is de�ned to be therole of f . For example, looking at the dug for app1 in Figure 3.2, node 0 is agenerator, nodes 1 to 2n� 1 are mutators, and node 2n is an observer.We are now in a position to give a de�nition of a dug. For nodes with morethan one incoming arc, we need to identify which arc corresponds to which argu-ment. We therefore label every arc to such a node with an argument position.De�nition 3.6 (dug)Given a directed graph G = (V; E), a simple adt A = (T; ff1; : : : ; fng),a total mapping � : V ! Pap(A), and a bijection � : V ! f1::jVjg, letEP � E be those arcs incident to a node with more than one incoming arc,and let � : EP ! N be a total mapping. The 4-tuple (G; �; �; �) is a dugfor A, if for every v 2 V the following properties are satis�ed:1. The arity of �(v) equals the in-degree of v.2. If v has more than one incoming arc, � restricted to the incoming arcsis a bijection with the set f1::indegree(v)g.3. The application of �(v) to the arguments given by E and � is typeconsistent.4. If v has successor w 2 V, �(v) < �(w).5. The type of every argument of �(v) is T a.

www.manaraa.com

3.2. EVALUATION 51Properties 1{3 ensure the dug is well-de�ned. Properties 4{5 impose re-strictions on dugs to make generating dugs easier: Property 4 ordersthe arguments of an operation before the operation itself|note that thisforces the graph to be acyclic|see the problem Choosing the operationbefore the arguments of Section 4.1.1 for justi�cation of this restriction;Property 5 ensures only version arguments are taken from the results ofother operations|see the problem Choosing non-version arguments fromthe graph of Section 4.1.1 for justi�cation.Example 3.6Once again using the adt AList , whose signature is given in Figure 3.3, anexample of a dug is shown in Figure 3.4. A table de�nes �. The ordering� of the evaluation of the nodes is given by: �(vi) = i. Labels assignedby � are written beside the relevant arcs: v5 catenates v1 onto the front ofv3, and v7 catenates v1 onto the front of v6. The type variable a can besubstituted by the type Char to obtain type consistency for every functionapplication.As each operation returns only a single value, we may associate each node withthe value it produces. The nodes of the version graph are associated with versionsformed by either generating a fresh version or by mutating one or more previousversions. The arcs within the version graph represent the ow of data withinthe privacy of the adt framework. The arcs going out from the version graphrepresent the ow of data out of the privacy of the adt framework.3.2 EvaluationWe have so far presented a dug as a record of how an application uses an imple-mentation of an adt. We can reverse this process. By creating an evaluator ofdugs, we create an application that uses an adt implementation in the mannergiven by the dug it evaluates. We can then use this application as a benchmarkwith a known pattern of use.For example, evaluating the dug for app1 of Figure 3.2 should create an emptyqueue, then snoc the value True onto the queue n times, then take the tail of the

www.manaraa.com

52 CHAPTER 3. DATATYPE USAGE GRAPHS

v0v1
v51 v32

v2 v4
v6v71 2v8 v9v10 �v0 emptyv1 �l � cons 'c' lv2 emptyv3 �l � cons 'h' lv4 �l � head lv5 �l1 � �l2 � catenate l1 l2v6 �l � tail lv7 �l1 � �l2 � catenate l1 l2v8 �l � tail lv9 �l � lookup l 1v10 �l � isEmpty lFigure 3.4: A dug for the list adt AList (see Figure 3.3).queue (n � 1) times, and �nally apply head. We will de�ne evaluation by �rstde�ning how we may associate each node with a function application.De�nition 3.7 (Interpretation of Partial Applications)Let A be any simple adt. Let f be an operation of A. Let g 2 Pap(A)be any partial application of f . Let I be an implementation of A. Theinterpretation of g under I, denoted by [[g]]I , is the value of g using theimplementation of f in I.Example 3.7Let L be the ordinary Haskell implementation of lists, then� [[�l � cons True l]]L = \l -> (True:l)� [[�l � head l]]L = \(x:xs) -> x� [[empty]]L =[]De�nition 3.8 (Interpretation of Nodes)Let (G; �; �; �) be any dug for the adt A, let v be any node of G, and let

www.manaraa.com

3.2. EVALUATION 53I be an implementation of A. Let e1; : : : ; ek, k � 0, be the arcs incident tov, ordered by � , from the nodes v1; : : : ; vk respectively. The interpretationof v under I, denoted by [[v]]I , is the following expression:[[v]]I = [[�(v)]]I [[v1]]I : : : [[vk]]Iwhere the right-hand side is an application of the function [[�(v)]]I . Notethat as G is acyclic, this recursive de�nition is sound.Example 3.8Using the dug shown in Figure 3.4, and the ordinary Haskell implemen-tation L of lists,� [[v1]]L =(\l -> ('c':l)) []� [[v4]]L =(\(x:xs) -> x) ((\l -> ('h':l)) [])3.2.1 Order of EvaluationThe order of evaluating the interpretations of the dug nodes can signi�cantlya�ect e�ciency. Within functional languages there are two main schemes fordeciding the order of evaluation of an expression: lazy and eager. We shallaccomodate both schemes by using the node ordering of a dug (G; �; �; �) givenby � in two separate ways.Lazy EvaluationIf we consider how a function is applied under lazy evaluation, we see that aclosure representing the application is �rst formed, then its value is perhapsdemanded one or more times, and then it is garbage collected. The formation ofthe closure can be a separate incident to its value being demanded. The orderof the formation of the closures can also a�ect e�ciency. Hence we shall orderthe forming of the closures of the expressions given by the interpretations of eachdug node.Under lazy evaluation, only the work required to form the demanded resultis performed. We must demand a result or no work will be done. Within theadt framework, we cannot look within an adt value, so we instead demand the

www.manaraa.com

54 CHAPTER 3. DATATYPE USAGE GRAPHSvalues that are of some other type. Looking at a dug, only the values given bythe observer nodes have such a type. The order in which we demand these valueswill a�ect e�ciency.Within the current framework we shall insist that the order in which wedemand the evaluation of the observer nodes coincides with the order of theformation of the closures associated with observer nodes, ie. as soon as we forma closure for an observer node, we demand it. There is the possibility for anextension here to allow for these to occur at di�erent times.De�nition 3.9 (Lazy Evaluation of a dug)Given a dug (G; �; �; �) for an adt A, and an implementation I of A, thelazy evaluation of the dug with respect to I is the process of performingthe following steps on each node �(i) in order:� Form the closure given by [[�(i)]]I .� If the node is an observer, demand the value of this closure.Example 3.9The lazy evaluation of the dug of Figure 3.4 would form the closures [[vi]]for 0 � i � 10 in order. When the closures for the observer nodes areformed, namely [[v4]], [[v9]], and [[v10]], their value is demanded at the sametime.Eager EvaluationWhereas with lazy evaluation many applications of functions may remain uneval-uated closures, under eager evaluation they will always be reduced. Hence theeager evaluation of a dug will evaluate every node and there is no distinctionbetween forming a function application and evaluating it.De�nition 3.10 (Eager Evaluation of a dug)Given an ordered dug (D; �), and an implementation I of A, the evalua-tion of the dug with respect to I is the process of taking each node �(i)in order and evaluating the application given by [[�(i)]]I .

www.manaraa.com

3.3. PROFILE 55Example 3.10The eager evaluation of the dug of Figure 3.4 would simply evaluate each[[vi]] for 0 � i � 10 in order.3.2.2 Abstract EvaluationThe most abstract implementation of an adt is the adt itself. We use theabstract operations to create, manipulate, and observe abstract values. Theseabstract values only exist within the abstract world of mathematics, not withinany machine.De�nition 3.11 (Abstract Evaluation)The abstract evaluation of a dug for the adt A is a mapping � that takesa node v to the result of evaluating [[v]]A.Example 3.11The abstract evaluation � of the dug of Figure 3.4 is given by the followingtable, using [x0; : : : ; xn] to denote a list of elements x0, . . . , xn:vi v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10�(vi) [] ['c'] [] ['h'] 'h' ['c'; 'h'] ['h'] ['c'; 'h'] ['h'] 'h' False3.3 Pro�leRecall from the introduction of this chapter that we want to create a benchmarkfrom a dug, and that we want to extract a dug from an application. However,a dug may be very large, and hence di�cult to give or inspect, so we shallnow de�ne the pro�le of a dug. The pro�le will condense the most relevantcharacteristics of a dug into a few numbers. We can use pseudo-random numbersto generate a family of dugs that on average have a given pro�le. The initial seedgiven to the pseudo-random number generator determines which one is chosen.We can now create a benchmark from a pro�le, and extract a pro�le from anapplication.We should �rst give some justi�cation of using pseudo-random numbers. Whydo we need a random element to our dug generation? This is because there aremany dugs that match a single pro�le, and without an element of randomness we

www.manaraa.com

56 CHAPTER 3. DATATYPE USAGE GRAPHSwill always pick the same one. But why cannot we just generate this one dug?Because �xing ourselves to just one of these invites bias into our results. Sucha bias may favour one adt implementation over another, unfairly representingtheir performance. Picking several of these dugs at random combats this bias.So what characteristics do we choose to record in a pro�le? One obviouschoice is the fraction of persistent applications of operations. An applicationof an operation is persistent if one of the version arguments has already beenmutated|that is, a mutator has already been applied to this argument. However,considering the application of an operation as a whole causes problems with thegeneration of dugs. Speci�cally, we will �nd that it is easier to choose thearguments independently of each other before applying the operation|see theproblem Choosing the operation before the arguments of Section 4.1.1.To solve this problem, we split an application into the parts represented bythe arcs: One arc identi�es one application. This allows us to identify whetheran application is persistent according to whether the source of the arc has beenpreviously mutated. With this de�nition of persistence we can identify whichapplications of operations to an argument are persistent independently of theother arguments. Note that the order associated with the targets of the arcsindicates the order of the applications.De�nition 3.12 (Mutation, Observation)For any node v of the version graph of a dug, amutation of v is an arc fromv to a mutator node. Note that an n-ary mutator creates n mutations. Anobservation is de�ned similarly. Mutations and observations inherit theordering given to the nodes to which they point.Example 3.12Looking at the dug in Figure 3.4, the arc from v7 to v8 is a mutation,and the arc from v7 to v9 is an observation. As v9 is ordered after v8, theobservation v7 ! v9 is ordered after the mutation v7 ! v8.De�nition 3.13 (Persistent, Ephemeral)For any node v of the version graph of a dug with node ordering �, amutation or observation of v is persistent if it is ordered by � after the

www.manaraa.com

3.3. PROFILE 57earliest mutation of v. This captures the notion of persistence: mutatingor observing the previous value of a mutated data structure. A mutationor observation that is not persistent is called ephemeral.Example 3.13As in Example 3.12, looking at the dug in Figure 3.4, we see that theobservation v7 ! v9 occurs after the mutation v7 ! v8. As this mutationis the only mutation of v7, it is also the earliest. Thus the observationoccurs after the earliest mutation, and so is persistent. The mutationv1 ! v7 is also persistent. The observation v3 ! v4 is ephemeral.Another obvious characteristic of dugs is the ratio of how many times we applyone operation relative to another.De�nition 3.14 (Weight)For any dug D, the weight of a mutator f in D is the number of muta-tions that apply f to nodes in D. The weight of an observer is de�nedsimilarly. The weight of a generator f is simply the number of nodes thatare generated by f . To unify these two de�nitions, one might imagine asingle void node with arcs to each generator node.Example 3.14The weights of the operations in the dug in Figure 3.4 are given below.Role Generator Mutator ObserverOperation empty catenate cons tail head lookup isEmptyWeight 2 4 2 2 1 1 1We can localise the weight of a mutator or of an observer to just a subgraph.This allows us to see how this ratio might change from one region of the dug toanother.De�nition 3.15 (Weight in H)For any subgraph H of a version graph, the weight of a mutator f in His the number of mutations that apply f to nodes in H. The weight of anobserver is de�ned similarly.

www.manaraa.com

58 CHAPTER 3. DATATYPE USAGE GRAPHSExample 3.15Looking at the dug in Figure 3.4, let the subgraph H include just thenodes v0, v1, v2 and v3. The weights of the mutators and observers in Hare given below.Role Mutator ObserverOperation catenate cons tail head lookup isEmptyWeight in H 3 2 0 1 0 0Information such as the average number of mutations of a node is not only usefulfor summarising dugs, it also provides a very convenient way to generate a dugwith a given pro�le (see ahead to Section 4.1.1).From the fraction of mutations that are persistent, we can calculate the aver-age number of mutations of previously mutated nodes as follows. Let pm be thefraction of mutations that are persistent. Take any node vi that is mutated atleast once. The �rst mutation of vi is ephemeral, and the remaining ni mutationsare persistent. Averaging over all j mutated nodes, we havepm = Pji=1 niPji=1(ni + 1) ; n = Pji=1 nij) n = pm1� pmIf we know the fraction m of nodes that are not mutated at all, we can calculatethe average number � of mutations of a node:� = 0m+ �1 + pm1� pm� (1�m) = 1�m1� pmWe call pm the persistent mutation factor (pmf), and m the mortality.If we calculate the ratio r of mutations to observations, we can also estimatethe average number of observations of a node. Making the assumption that anode was made by a mutator, then the average number of observations of a nodeis 1=r. As we have excluded nodes made by generators, this is only an estimate.From the fraction po of observations that are persistent, we can calculate theaverage number of observations made before the �rst mutation at (1�po)=r, andthe average number of observations made after the �rst mutation at po=r. Wecall po the persistent observation factor (pof).Later we shall wish to calculate the pro�le of a subgraph of a dug. Asthe weight of a generator cannot be localised to a subgraph, we separate out

www.manaraa.com

3.3. PROFILE 59generation weights from the weights of mutators and observers. To allow thecalculation of the ratio r of mutations to observations, we group the mutationand observation weights together to form the mutation-observation weights.De�nition 3.16 (dug Pro�le)The pro�le of a dug D with version graph GV is given by the following:� Generation weights: The ratio of the weights of each generator.� Mutation-observation weights: The ratio of the weights of each mu-tator and observer in GV .� Mortality : The fraction of nodes in GV that are not mutated.� pmf: The fraction of mutations of nodes in GV that are persistent.� pof: The fraction of observations of nodes in GV that are persistent.Example 3.16The dug shown in Figure 3.4 has the following pro�le:� Generation weights: As there is only one generator, empty, this prop-erty is redundant at: empty = 1.� Mutation{observation weights: We havecatenate : cons : tail : head : lookup : isEmpty = 4 : 2 : 2 : 1 : 1 : 1Note that each application of catenate carries double the weight of anapplication of one of the other operations because each application ofcatenate creates two mutations.� Mortality : Of the eight version nodes, only one (v8) is not mutated,so the mortality is 1=8.� pmf: There are eight mutations, one of which (v1 ! v7) is persistent,so the pmf is 1=8.� pof: There are three observations, one of which (v7 ! v9) is persis-tent, so the pof is 1=3.If the pmf and pof of a dug are both zero, then we know that there are nopersistent applications of an operation. Therefore, we make the following de�ni-tion.

www.manaraa.com

60 CHAPTER 3. DATATYPE USAGE GRAPHSDe�nition 3.17 (Single-Threaded)An application using an implementation of a simple adt A in a mannerrecorded by the dug D is single-threaded for A if the pmf and pof of Dare both zero. A single-threaded application does not require a persistentimplementation of the adt.Example 3.17The dug of application app1 shown in Figure 3.2 has pmf and pof bothzero and is therefore single-threaded.3.4 Shadow Data StructureTo aid the generation of dugs, and to add information to pro�les, we use a shadowdata structure. A shadow data structure maintains a shadow of every version.This shadow contains information about the version. A shadow data structuredoes not depend on any implementation of the adt, but is instead abstract andapplicable to any implementation of the same adt.As a running example, for the adt AList , whose signature is given in Fig-ure 3.3, and for which each version is a list, let the shadow of a version containthe length of the list. Below we give an overview of the uses of a shadow datastructure.Guarding Against Unde�ned Function ApplicationsWhen generating a dug from a pro�le, if we blindly choose to label a node withany operation, we may create an application that is unde�ned: for example,most list adts would not de�ne the value of head empty. Such applications ofpartial operations need to be excluded from a dug generated at random. Weneed to have a guard around the partial operation telling us which applicationsof the operation we can form. We can use the shadow of a version to storeenough information to allow decisions about whether a particular operation maybe applied to that version. For example, for AList , if we maintain the length of alist in the shadow, we can prevent the application head empty by only allowinghead to be applied to lists of length 1 or more.

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 61Phasing Pro�lesWe can also use the shadow data structure to split a pro�le into phases. Theshadow of a version node will determine which phase the node is in. This is usefulfor giving a more speci�c pro�le. For example, we might wish to make a dugfor AList where the average length of the list is n elements. We can do this if wemake cons more likely than tail on lists shorter than n elements, and vice versafor lists longer than n elements. This is possible if we maintain the length of thelist in the shadow, and give a di�erent pro�le for each of the two phases: lists nolonger than n elements, and lists longer than n elements.Shadow Pro�lingThe shadow could also store any other useful information about what operationswere performed. This shadow pro�le information would allow pro�le informationspeci�c to an adt to be collected, along with the general pro�le informationalready described in this chapter. For example, by maintaining the length of alist, we can calculate the average length of a list per mutation or observation.Note that a shadow data structure is only used for the generation or analysis ofdugs, and need not be involved in applications using an adt implementation.We shall later use a further restriction on dugs to aid both dug generationand dug extraction: Versions may only contain integer elements. Introducingthis restriction here also simpli�es the de�nition of a shadow data structure. SeeSection 4.1.1 for a discussion of this restriction. This restriction implies that thetype variable a in the type of an operation becomes instantiated to Int.We shall now de�ne a shadow data structure precisely.3.4.1 ShadowingWe should �rst de�ne the shadows themselves. The shadows are maintained bythe shadow operations.De�nition 3.18 (Shadow Operation)For any simple adt (T; F), and for any generator or mutator f 2 F , let t

www.manaraa.com

62 CHAPTER 3. DATATYPE USAGE GRAPHSbe the type of f with type variable a instantiated to Int. For any type s,the function g is an s-shadow of f if g has the type shadow s(t) given byshadows(t1 ! t2) = shadow s(t1)! shadow s(t2)shadows(T Int) = sshadow s(Int) = IntThe shadows maintained by this shadow operation have type s. There areno shadows of observers as they do not return versions.Example 3.18For any type s, an s-shadow of the lookup operation ofAList (see Figure 3.3)has the following type:shadow s(T Int ! Int ! Int ! T Int) = s! Int ! Int ! sDe�nition 3.19 (Shadowing)Let A = (T; ff1; : : : ; fng) be any simple adt. Let ffi1 ; : : : ; fimg be thegenerators and mutators of A. For any set F 0 = ff 0i1; : : : ; f 0img of opera-tions, and any type s, the pair (s; F 0) is a shadowing of A if the followinghold:� Each f 0ij is an s-shadow of fij .� There exists a homomorphism � :: T Int! s; that is,for all fij ; x1; : : : ; xk, where k � 0 is the arity of fij ,if fij x1 : : : xk is well-de�ned, then the following holds:� (fij x1 : : : xk) = f 0ij (�0 x1) : : : (�0 xk)where for all x, �0 x = 8<: � x; if x has type T Intx; otherwiseExample 3.19The Haskell code of Figure 3.5 is a shadowing SList of the adt AList (seeFigure 3.3). In this case, the type s shadowing List Int is of type Int, andthe homomorphism � :: List Int ! Int is the function that returns thelength of a list.

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 63type Shadow = Intempty_Shadow :: Shadowempty_Shadow = 0catenate_Shadow :: Shadow -> Shadow -> Shadowcatenate_Shadow s0 s1 = s0 + s1cons_Shadow :: Int -> Shadow -> Shadowcons_Shadow i0 s0 = s0 + 1tail_Shadow :: Shadow -> Shadowtail_Shadow s0 = s0 - 1Figure 3.5: A shadowing of adt AList (see Figure 3.3).De�nition 3.11 assigns an abstract adt value to every version node of a dug; thefollowing de�nition assigns the shadow of the adt value.De�nition 3.20 (Shadow Evaluation)Let D be any dug for adt A, and S = (s; F) be any shadowing of A. Theshadow evaluation of D is a mapping � that takes a version node v to theresult of evaluating [[v]]S , where an operation is interpreted by its shadow.Example 3.20Taking the dug of Figure 3.4 with the shadowing SList of Figure 3.5, theshadow evaluation � of the dug is given below:vi v0 v1 v2 v3 v5 v6 v7 v8�(vi) 0 1 0 1 2 1 2 1Note from Examples 3.11 and 3.20 that the evaluation of each version node underSList equals the length of the list produced by the evaluation under AList . Thisresults from the condition that a shadowing de�nes a homomorphism from theadt values to the shadow values. This is now proved.

www.manaraa.com

64 CHAPTER 3. DATATYPE USAGE GRAPHSLemma 3.1 For any dug D for adt A, any version node v in D, and anyshadowing S de�ning a homomorphism �, if [[v]]A is well-de�ned, then � [[v]]A =[[v]]S .Proof: We shall proceed by induction on n, the number of nodes of in the versiongraph.� For n = 0 the lemma is satis�ed trivially.� We shall assume that the lemma is true for all dugs with no greater than nversion nodes. We claim the lemma is true for any dug with n+ 1 versionnodes. Take such a dug D. Take any version node v with zero out-degreewithin the version graph. There must be at least one such node as the graphis acyclic. As v has no successors within the version graph, we may removev and any successors outside of the version graph from D to obtain anotherdug D0. As D0 has n version nodes, the inductive hypothesis states thatfor any version node v0 in D0, � [[v0]]A = [[v0]]S . Therefore we need only provethat the lemma is true for v. Let e1; : : : ; ek, k � 0, be the arcs incident to v,ordered by � , from the nodes v1; : : : ; vk respectively. Let f be the operationfrom which �(v) is derived, and let f 0 be the shadow of f given by S.[[v]]S = [[�(v)]]S [[v1]]S : : : [[vk]]S= (�x1 � : : : � �xk � f 0 a1 : : : am) (� [[v1]]A) : : : (� [[vk]]A)Without loss of generality, we shall assume that for 1 � i � k, ai = xi.[[v]]S = f 0 (� [[v1]]A) : : : (� [[vk]]A) ak+1 : : : am= � (f [[v1]]A : : : [[vk]]A ak+1 : : : am)= � ((�x1 � : : : � �xk � f a1 : : : am) [[v1]]A : : : [[vk]]A)= � (�(v) [[v1]]A : : : [[vk]]A)= � [[v]]A 2This lemma shows that we can have access to the shadow of a version, as de�nedby the homomorphism of the shadowing, by using just the shadow operations.We do not need a version to create a shadow, we need only know which operationscreated the version. This abstracts us away from any concrete representation ofthe version.

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 65For example, the shadowing of Figure 3.5 de�nes a homomorphism from aversion, which is a list, to its length. Lemma 3.1 shows we can calculate theshadow of a version v, namely its length, without having access to v itself. Allwe need to know is which operations created v. To construct the length of v, weuse shadows of the same operations, with the same arguments.3.4.2 GuardingUsing the information stored in the shadows, we wish to de�ne a guard of anoperation f that indicates which applications of f are allowed. We could make aguard take the same arguments as f and return true or false, according to whetherthe application is allowed or not. However, when generating an application atrandom, this would force every argument of an operation to be chosen beforepassing these arguments to the relevant guard. With an application such as lookupl i, this means guessing which indices are available for lookup before testing thevalidity of the application. This would be very ine�cient.The de�nition of a dug already restricts arguments supplied by the result ofanother operation to just version arguments. This allows non-version argumentsto be chosen independently of the results of other operations. Suppose we passthe guard only the version arguments of an operation. The valid ranges of re-maining arguments could be returned as the result. One argument could then bechosen from each range with the resulting application guaranteed to be valid. Forexample, the guard for lookup could return a range of indices up to the length ofthe list.This works only if we make the further restriction that the guard returnsindependent ranges of non-version arguments. Where the ranges of valid non-version arguments are dependent, the guard must return some independent subsetof ranges. As we have ensured that every non-version argument is of type Int, aguard may return a range using the type IntSubset.

www.manaraa.com

66 CHAPTER 3. DATATYPE USAGE GRAPHSDe�nition 3.21 (IntSubset, member)The type IntSubset is given bydata IntSubset = Allj Poolj Int :..: Intj FiniteSet (Set Int)j Noneand represents subsets of integers in the sense made precise by the followingde�nition of the membership operation:member :: Int ! IntSubset ! Boolmember i All = Truemember i Pool = (1 � i � poolSize)member i (l :..: u) = (l � i � u)member i (FiniteSet s) = memberFS i smember i None = Falsewhere memberFS is the membership operation on the type Set Int, andpoolSize is some constant. We assume the availability of a suitable adt tomanipulate values of type Set Int.The de�nition of IntSubset allows the same set to be given in more than one way;in fact, only the FiniteSet constructor is needed. However, the other constructorsprovide dynamic, more e�cient, or shorter alternatives:� The set of all possible integers is more e�ciently given as All than asFiniteSet (foldr add empty [minBound ::maxBound]).� The constant poolSize can be given at run-time of the generation of adug. The constructor Pool therefore gives a set of dynamic size. Thisis useful in assessing the e�ect of equal elements on e�ciency of adtimplementations|see the problem Choosing non-version arguments fromthe graph of Section 4.1.1 for further details.� The set f1; : : : ; ng is more easily and more e�ciently given as 1 : :: : n thanas FiniteSet (foldr add empty [1 ::n]).

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 67� The None is included to complement All and as a shorter alternative toFiniteSet empty.Using IntSubset, we can now give the type of a guard.De�nition 3.22 (Guard Type)Let T be any type constructor of arity one. Let t be any simple type over Twith type variable a instantiated to Int. Let n be the number of argumentsof an operation of type t, v of which are version arguments. For any types, the type guard s(t) is given byguard s(t) = v timesz }| {s! � � � ! s! 8<: [IntSubset]n�v if v < nBool if v = nwhere [a]n is the type of lists of n elements of type a, and where s representsthe type of shadows. This replaces every version argument with a shadow,and moves every non-version argument over to the result type. There aren � v non-version arguments; if n � v = 0, then the result type is Bool,otherwise it is a list of length n� v of elements of type IntSubset.Example 3.22Consider the adt AList , whose signature is in Figure 3.3. For any type s,any guard of the operation head using shadows of type s must be of typeguard s(T Int ! Int) = s! BoolIf we add the operation update of typeupdate :: List a! Int ! a! List ato AList , then any guard of update must be of typeguard s(T Int ! Int ! Int ! T Int) = s! [IntSubset]2As the type [a]n cannot be written in Haskell, one might ask why we have chosenit over an i-tuple. Unfortunately, Haskell does not support functions over tuplesof arbitrary size. We must work with the result of any guard in general, andthus we are forced to use lists. However, the type of lists does not express their

www.manaraa.com

68 CHAPTER 3. DATATYPE USAGE GRAPHSlength. Hence lists with types that do specify length were chosen as a compromisebetween expressibility and practicality.We can now de�ne a guard itself. We ensure the guard is of the correct type,and that it correctly indicates when a function application is well-de�ned.De�nition 3.23 (Guard)Let S = (s; F 0) be a shadowing of the adt A = (T; F) de�ning a homo-morphism � :: T Int ! s. For any operation f 2 F of type t, the functiong is an S-guard of f if the following hold:� The type of g is guard s(t).� For all x1; : : : ; xn, where xi1 ; : : : ; xik are each of type T Int andxj1; : : : ; xjl are the rest, we have:{ If l = 0, f x1 : : : xn is well-de�ned ifg (� xi1) : : : (� xik) = True{ If l � 1, f x1 : : : xn is well-de�ned ifg (� xi1) : : : (� xik) = [s1; : : : ; sl]and for all 1 � t � l, member xjt st = TrueExample 3.23The Haskell code of Figure 3.6 de�nes SList -guards of every operation ofAList . Recall that the homomorphism given by SList is the length function.The guards of empty, catenate, and isEmpty, are trivial as these operationsare total. The guard of cons allows any element to be added to the frontof a list. The guard of tail will return True when and only when the listwhose shadow it is being applied to is non-empty, ie. exactly when it issafe to apply tail to the list. The guard of head is identical. The guardof lookup will return the range of indices over which lookup is well-de�ned:any index from �rst to last element inclusive.

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 69
empty_Guard :: Boolempty_Guard = Truecatenate_Guard :: Shadow -> Shadow -> Boolcatenate_Guard s0 s1 = Truecons_Guard :: Shadow -> [IntSubset]cons_Guard s0 = [All]tail_Guard :: Shadow -> Booltail_Guard s0 = s0>0head_Guard :: Shadow -> Boolhead_Guard s0 = s0>0lookup_Guard :: Shadow -> [IntSubset]lookup_Guard s0 = [0:..:(s0-1)]isEmpty_Guard :: Shadow -> BoolisEmpty_Guard s0 = TrueFigure 3.6: Haskell code for SList -guards of the operations ofAList (see Figure 3.5).Note that as Haskell does not have a type for lists of a given length, and as tuplesare awkward to manipulate in the general case, lists of arbitrary length are used.

www.manaraa.com

70 CHAPTER 3. DATATYPE USAGE GRAPHSWe shall generate a dug by adding one node at a time. We shall choose anoperation and predecessors for a new node, and then decide using the guardswhich integer arguments, if any, will produce a new dug with a valid evaluation.We now wish to prove that the guards do allow us to make this decision.Lemma 3.2 Suppose we have a dug D = (G; �; �; �) for adt A, a shadowingS of A, and an S-guard for every operation of A, with every node of D having awell-de�ned evaluation under A. Now propose an extension of D by one node vusing operation f and predecessors v1; : : : ; vk. The guards can use just the infor-mation provided by the shadow evaluation of D to give sets of integer arguments.Choosing any integer from each will provide a well-de�ned evaluation of v underA.Proof: Let g be the S-guard of f . If valid, the evaluation of v under A is givenby the result of evaluating the following:[[v]]A = �(v) [[v1]]A : : : [[vk]]A= f x1 : : : xnwhere xim = [[vm]]A, fximgkm=1[fxjmglm=1 = fxmgnm=1 and k+l = n. As each vm isin D, [[vm]]A is well-de�ned. By Lemma 3.1, � xim = � [[vm]]A = [[vm]]S . Therefore,given the shadow evaluation of D, we can determine the value of each � xim ,and hence the integer sets given by g (� xi1) : : : (� xik). From De�nition 3.23,choosing any xj1 ; : : : ; xjl from these sets gives a well-de�ned evaluation of v underA. 2Note that, in general, it may not be possible to de�ne a guard that gives everywell-de�ned application|for example, where the integer arguments cannot beindependently chosen. However, for all of the adts in this thesis, it is possibleto de�ne guards which do give every well-de�ned application.3.4.3 PhasingIt is useful to be able to identify di�erent phases of an application. The pro�leof each phase may be given separately. For example, an application could havea growth phase where the data structures are being built, and a decay phase

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 71where the data structures are being examined and taken apart. The pro�le ofthe growth phase would show more applications of building operations than ofdeconstructing operations, and vice versa for the decay phase.Thus a pro�le split into phases reveals more about an application's use of theadt than just the whole pro�le. Additionally, when generating a dug accordingto pro�les for each phase, there is more control over the generation process.We assign each adt version to a phase. Note, however, that at any one pointin the computation, there may be many versions in di�erent phases. For example,using the growth and decay phase example above, there may be some versionsbeing built in the growth phase, whilst some are being taken apart in the decayphase.Information stored in the shadow determines which phase a version is in. Thephases partition the version graph; that is, each version node will belong to asingle phase. The non-version nodes are not shadowed and will not belong toany phase. We will identify a phase by a value of the type PhaseId which wewill de�ne as a type synonym with Int. The �rst phase is phase 1. Letting s bethe type of a shadow, we may suppose that the following simple function wouldsu�ce: phaser :: s! PhaseIdIn general however, the function phaser needs more information than this.Suppose we are generating dugs over the list adt AList . Suppose further thatwe want to split the lists into two phases: those below a given length, and thoseabove. We wish to parameterise the phasing over this length. This is the phaseargument. A function phaseArgRead is required to read in the argument from astring. A value phaseArgDefault is required to specify the phase argument to useif none is given.De�nition 3.24 (Phasing)Let S = (s; F 0) be a shadowing of some adt. The 4-tupleP = (r; phaseArgRead ; phaseArgDefault; phaser)

www.manaraa.com

72 CHAPTER 3. DATATYPE USAGE GRAPHSdata PhaseArg = MeanSize Int | NoMeanSizephaseArgRead :: String -> PhaseArgphaseArgRead s = MeanSize (read s)phaseArgDefault :: PhaseArgphaseArgDefault = NoMeanSizephaser :: Shadow -> PhaseArg -> PhaseIdphaser _ NoMeanSize = 1phaser s (MeanSize m)| s <= m = 1| otherwise = 2Figure 3.7: Functions implementing an SList -phasing assigning lists no longer thanthe phase argument to phase 1, and those longer to phase 2. See Example 3.19for the de�nition of SList . If no phase argument is given, all nodes are placed inphase 1.provides an S-phasing when the following type signatures are correct:phaseArgRead :: String ! rphaseArgDefault :: rphaser :: s! r! PhaseIdNote that the type PhaseId is a type synonym for Int.Example 3.24The Haskell code of Figure 3.7 de�nes an SList -phasing. This phasingplaces lists of length less than or equal to the phase argument (an integer)into phase 1, and the rest into phase 2.Each part of the dug pro�le de�ned in Section 3.3 can be parameterised over thephase of a version node, except for generation weights.

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 73De�nition 3.25 (Phased dug Pro�le)Let D be a dug for adt A with version graph GV . Let S be a shadowing ofA. Let H1; : : : ;Hp be the subgraphs of GV partitioned by the S-phasing P.The P-phased dug pro�le of D can be calculated by replacing GV with Hiin De�nition 3.16 for every property bar generation weights. The phasedpro�le of a dug is therefore:� A generation weights ratio� A set of the following properties, one for each phase of the dug:mutation-observation weights, mortality, pmf, and pof.Example 3.25Using the SList -phasing PList of Example 3.24 with a phase argument of 1,partition the dug shown in Figure 3.4 into two phases: (1) lists of lengthzero or one, and (2) lists of length two or more. Example 3.20 gives thelength of each list. Let H1 contain nodes in phase (1), namely v0, v1, v2,v3, v6, and v8. Let H2 contain nodes in phase (2), namely v5 and v7. ThePList -phased pro�le of this dug is given below:� Generation weights|as there is only one generator, empty, this prop-erty is redundant at: empty = 1.� Set of pro�les of each phase.{ For H1, the lists of length zero or one, we have the followingpro�le:� Mutation-observation weights:catenate : cons : tail : head : lookup : isEmpty =4 : 2 : 0 : 1 : 0 : 1� Mortality|of the six version nodes in H1, only one (v8) isnot mutated, so the mortality is 1=6.� pmf|there are six mutations of nodes in H1, one of which(v1 ! v7) is persistent, giving a pmf of 1=6.� pof|there are two observations of nodes in H1, neither ofwhich is persistent, giving a pof of 0.

www.manaraa.com

74 CHAPTER 3. DATATYPE USAGE GRAPHS{ For H2, the lists of length two or more, we have the followingpro�le:� Mutation-observation weights:catenate : cons : tail : head : lookup : isEmpty =0 : 0 : 2 : 0 : 1 : 0� Mortality|all version nodes are mutated, so the mortality is0.� pmf|there are three mutations of nodes inH2, none of whichare persistent, giving a pmf of 0.� pof|there is one observation of a node in H2 (v7 ! v9),which is persistent, giving a pof of 1.3.4.4 Shadow Pro�lingShadow pro�ling allows information to be collected about every operation appliedto a version, namely mutations and observations. The shadow of any versionthat is mutated or observed is the source of this information. For example, if theshadow of a list contained its length, we could sum the lengths of lists involvedin mutations and observations and return the average. Note that this is notthe same as summing the lengths of every mutated or observed list: if a list ismutated or observed more than once, its shadow is used more than once.We will need to maintain a shadow pro�le. The initial value will be given byshadowPro�leZero. Information will be collected using the function shadowPro-�ler. The �nal value will be shown using the function shadowPro�leShow.De�nition 3.26 (Shadow Pro�ling)Let S = (s; F 0) be a shadowing of some adt. The 4-tuple(p; shadowPro�leZero; shadowPro�ler ; shadowPro�leShow)provides an S-pro�ling when the following type signatures are correct:shadowPro�leZero :: pshadowPro�ler :: p! s! pshadowPro�leShow :: p! String

www.manaraa.com

3.4. SHADOW DATA STRUCTURE 75data ShadowProfile = ShadowProfile Int IntshadowProfileZero :: ShadowProfileshadowProfileZero = ShadowProfile 0 0shadowProfiler :: ShadowProfile -> Shadow -> ShadowProfileshadowProfiler (ShadowProfile sum count) s =ShadowProfile (sum+s) (count+1)shadowProfileShow :: ShadowProfile -> StringshadowProfileShow (ShadowProfile sum count) ="Average size = " ++ show (sum/count)Figure 3.8: Functions implementing an SList -pro�ling. The average length overevery mutation and observation of a list is calculated. See Figure 3.5 for thede�nition of SList .Example 3.26The Haskell code of Figure 3.8 de�nes an SList -pro�ling. This shadowpro�ling calculates the average length of a list over all mutations and ob-servations. For the dug of Figure 3.4, this reports an average length of12=11. To verify this, here is a table of every mutation and observation,and the corresponding length of the mutated or observed list:Mutation/Observation v0 ! v1 v2 ! v3 v3 ! v4 v1 ! v5 v3 ! v5Version Operated On v0 v2 v3 v1 v3Length 0 0 1 1 1v5 ! v6 v1 ! v7 v6 ! v7 v7 ! v8 v7 ! v9 v8 ! v10v5 v1 v6 v7 v7 v82 1 1 2 2 1Given a list l of shadows of versions that are mutated or observed, one mightview the shadow pro�le with:

www.manaraa.com

76 CHAPTER 3. DATATYPE USAGE GRAPHSshadowPro�leShow (foldl shadowPro�ler shadowPro�leZero l)3.4.5 De�nitionWe are now in a position to give a formal de�nition of a shadow data structure,which includes shadowing, guarding, phasing, and shadow pro�ling.De�nition 3.27 (Shadow Data Structure)For any simple adt A = (T; F), any shadowing S of A, any set W con-taining a single S-guard of every operation in F , any S-phasing P, andany S-pro�ling O, the 4-tuple (S;W;P;O) is a shadow data structure forA.Example 3.27Take SList from Figure 3.5,WList containing the SList -guards of Figure 3.6,PList from Figure 3.7, and OList from Figure 3.8. The 4-tuple(SList ;WList ;PList ;OList)is a shadow data structure for the adt AList , whose signature is given inFigure 3.3.3.5 SummaryWe now have a formal model capturing how an application uses a data structure:a dug. We also have a summary of the most important aspects of this use: apro�le. By generating a dug from a pro�le, and by de�ning the evaluation of adug, we can now create a benchmark from a pro�le. The shadow data structureplays an important role in the generation of dugs by allowing us to avoid unde-�ned applications of operations. By extracting a dug from an application andby calculating its pro�le, we can also create a pro�le from an application. Theshadow data structure helps here by adding useful information to the extractedpro�le.However, all of this is de�ned only in theory. In the following chapter we shallturn this theory into practice by giving algorithms for the generation, evaluation,extraction, and pro�ling of dugs.

www.manaraa.com

Chapter 4
Implementing Datatype UsageGraphs
As stated at the start of Chapter 3, we want to be able (a) to create a bench-mark from a description of use, and (b) to create a description of use from anapplication. In Chapter 3, we de�ned a dug, describing how a data structureis used by an application. We then outlined in theory how we can (a) create abenchmark from a pro�le of a dug, and (b) create a pro�le of a dug from anapplication. In this chapter, Sections 4.1 and 4.2 show how these ideas can beimplemented. Section 4.3 describes the technical details involved in these con-crete implementations. Section 4.4 evaluates the accuracy and e�ciency of theseimplementations.4.1 From Pro�le to BenchmarkRecall from Section 3.3 that we create a benchmark from a pro�le as follows:(1) Use a pseudo-random number generator to create a dug that probabilisti-cally has the given pro�le|that is, the expected pro�le is the one given.(2) Use a dug evaluator to evaluate this dug using a given implementation ofthe adt.Section 4.1.1 describes (1), and Section 4.1.2 describes (2).77

www.manaraa.com

78 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSTo generate a dug:while the dug is too small dochoose an operationchoose version arguments for the operationchoose non-version arguments for the operationadd a node to the dugadd arcs from the nodes used as arguments to the new nodelabel the node with the operation and the remaining arguments
Figure 4.1: Overview of the dug generation algorithm.4.1.1 dug GenerationHow shall we build a dug? Figure 4.1 gives a reasonable starting point for analgorithm.Problems with dug GenerationUnfortunately, the simple algorithm of Figure 4.1 encounters some problems.These are listed below, together with the solutions we choose.� Creating unde�ned applications. Some applications of operations may notbe well de�ned. For example, the application head empty is usually notde�ned. We need to avoid these applications. We do this by maintainingextra information|a shadow|about each possible argument of an applica-tion. A guard protects us from creating an unde�ned application, by usingthe shadow of every argument. Shadows and guards make up part of ashadow data structure|see Section 3.4.� Allowing unde�ned arguments. Lazy evaluation evaluates the operationbefore the arguments. Therefore, adding a node with (as yet) unde�ned ar-guments seems reasonable. However, without knowing the arguments, wecannot avoid unde�ned applications using a shadow data structure. There-fore we never add a node without knowing all the arguments.

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 79� Choosing the arguments from the whole graph. We could pick the argumentsfrom any part of the dug already formed. However, in practice, becausewe must maintain a shadow of every possible argument, this can cost toomuch memory. Therefore we restrict choice of arguments to a subgraph,the frontier. We need only maintain shadows of nodes in the frontier. Ifthe frontier becomes too large, we remove a node (though it stays in thedug).� Choosing non-version arguments from the graph. We could choose non-version arguments from the results of observers. However, this proves toorestrictive|for example, whilst generating a dug for the adt of Figure 4.2,from where does the argument of type a for the �rst application of conscome? There can be no applications of head in the graph yet. But how elsecan we generate an argument of type a? As the role played by non-versionarguments is a relatively minor one (for example, no pro�le properties de-pend on them), we restrict them to being integers|that is, we instantiatethe type variable a to Int. For simplicity, now that every non-version argu-ment has type Int, we then choose all non-version arguments independentlyof the graph.But what e�ect do arguments of type a have on the e�ciency of adtimplementations? For those adts that do not examine the elements theycarry (that is, arguments of type a), the only a�ect these elements can haveis through their size|the larger the element and the more elements heldonto by the adt implementation, the larger the heap size which in turna�ects e�ciency. By restricting ourselves to elements of type Int, we haveno means of measuring this e�ect.For those adts that do examine the elements they carry, for example, bycomparing them under equality, or by ordering them, the values of theseelements can a�ect e�ciency. For the data structures considered in thisthesis, only equality and ordering is used on elements. Under this use ofelements, one of the main e�ects on e�ciency is through the number ofequal elements. This is controlled through the pool size.

www.manaraa.com

80 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSThe range of integer arguments given by the Pool data constructor ofIntSubset (see De�nition 3.21) are drawn from f1; : : : ; pg, where p is calledthe pool size. The smaller the pool size, the more equal elements will beinserted. Changing the pool size may e�ect the e�ciency of adt imple-mentations. For example, one implementation of a set adt may be moree�cient than another at handling many insertions of equal elements.Apart from this rather crude means of controlling the range of elements,we currently have no other control of the e�ect of elements on e�ciency.� Choosing the operation before the arguments. We could choose an operationfor the new node before choosing its arguments. However, this proves ratherawkward for generating a dug to �t some of the pro�le properties. Forexample, persistence and mortality depend on whether the arguments havebeen previously mutated or not. Before choosing arguments, we would needto know which have been mutated and which have not, if we are to attemptto match these properties. Additionally, phasing the pro�les increases ourdependence on prior knowledge of the arguments. It is easier if we choosean argument �rst, and the operation second. Therefore, for each new node,we plan which operations each node should be involved in as an argument,and in which order. See Section 3.3 for a discussion of how the pro�leproperties are used to plan a node's future.We choose an argument �rst, and let the �rst operation in its future deter-mine the operation of the new node. However, we must cater for operationsthat take more than one node as an argument. Therefore, we place argu-ments in a bu�er according to operation, and wait till it contains as manynodes as the operation takes arguments, before creating a new node withthis operation. Unfortunately, this has the drawback that it is impossibleto create an application where the same node appears as more than oneargument, for example, catenate v v. However, there does not appear to bea simple solution to this problem.� Diverging. If we allow the same operation and arguments to be chosenrepeatedly, and if this application is rejected by the guard, we could diverge.

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 81module List (List,empty,catenate,cons,tail,head,lookup,isEmpty)whereempty :: List acatenate :: List a -> List a -> List acons :: a -> List a -> List atail :: List a -> List ahead :: List a -> alookup :: List a -> Int -> aisEmpty :: List a -> BoolFigure 4.2: Haskell code giving the signature of a simple list adt providingnormal list operations, catenation and indexing.
Therefore, once a guard rejects an application, we remove this operationfrom the node's future.The dug Generation AlgorithmWe build a dug one node at a time. Each node has a future and a past. The futurerecords which operations we have planned to apply to the node, in order. Thepast records which operations we have already applied to the node. The nodeswith a non-empty future together make up the frontier. The �rst operation in afuture is called the head operation.As we add a node to the dug, we take arguments from the frontier. Thefrontier therefore is the subgraph on which we are building. We shall bound thesize of the frontier above and below:� Bounding above prevents the frontier from getting too large. If the pmfis non-zero, we shall need to mutate nodes more than once. This leads toexponential growth of the frontier, which may need to be capped to preventrunning out of memory. When the frontier exceeds a given limit, we removean arbitrary node from the frontier. This will a�ect the �nal pro�le, and

www.manaraa.com

82 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSso should only be used when there is no alternative.� Bounding below ensures there is at least one node to build on, and encour-ages diversity, especially in the presence of operations with large versionarities.When a new node is made, we record this as a birth. A list of births, in order,describes a dug completely. When a node no longer has a future, we recordits past as a death. A list of deaths also describe a dug completely1. A list ofbirths describes a dug from a global perspective (how was a node added to thegraph) whereas a list of deaths describes a dug from a local perspective (whatwas applied to a node). A list of births is more convenient for evaluating a dug.A list of deaths is more convenient for pro�ling a dug. Hence, we shall produceboth as we generate the dug.Our de�nition of a dug restricts non-version nodes from being re-used, andso each non-version node always has an empty future and an empty past. To savetime and space, we do not record the death of a non-version node|the node isassumed to die immediately after birth.An overview of the algorithm is given in Figures 4.3 and 4.4. Fuller details ofthe algorithms are given below.Generating the dug. The main function generateDug takes an integer andreturns a dug with this many nodes, in the form of a list of births and deaths.generateDug :: Int ! [BirthOrDeath]A birth records the identity of the node born, the operation used, the versionarguments (identities of other nodes), and the non-version arguments (integers).A death records the identity of the dead node, the arcs from the dead node, andthe shadow of the dead node.data BirthOrDeath = Birth NodeId Operation [NodeId] [Int]j Death NodeId [Arc] Shadow1This is only true if we consider a generator as taking an imaginary void node as an argument(see De�nition 3.14) and include the death of this node. However, in practice, it is easier tojust use the birth of the generator, which is what we do for dug pro�ling.

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 83

To generate a dug:while the dug is too small doif the frontier is too small thentry to make a new node using a generator (see part II)else-if the frontier is too large thenremove a node from the frontierrecord the death of this nodeelseremove a node from the frontier to act as a version argumentplace the node in the bu�er corresponding to the node's head operationif this bu�er is full thentry to make a new node with the bu�er's contents acting as the versionarguments for their common head operation (see part II)��odrecord the death of every node in the frontier and bu�ersFigure 4.3: Overview of the dug generation algorithm (part I).

www.manaraa.com

84 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS
To try to make a new node from an operation and some version arguments:apply the guard of the operation to the shadow of every version argumentif the guard fails thenremove the head operation of each version argumentelsechoose some non-version arguments from the result of the guardmake a new node by applying the operation to the argumentsrecord the birth of this nodeadd the new node to the dugif the operation is not an observer thenplan the future of the new nodeelseleave the future of the new node empty�if the new node has a non-empty future thenadd the new node to the frontierelserecord the death of this node�remove the head operation of each version argument�record the death of every version argument with an empty futureadd every other version argument to the frontierFigure 4.4: Overview of the dug generation algorithm (part II).

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 85The shadow of a node is needed for dug pro�ling but not for dug evaluating,and so we only include it in a death. Recall that an arc from a node u to a nodev represents the application of an operation at v to the result of the operationat u. The type Arc records the operation at v, the argument position of u, thenon-version arguments, and the identity of v.data Arc = Arc ftargetNodeOp :: Operation, sourceNodeArgPosn :: Int,intArgs :: [Int], targetNodeId :: NodeIdgThe function generateDug is de�ned using an auxiliary function|a function thatperforms the same task but maintains auxiliary arguments|called generateNodes,taking the following auxiliary arguments: the current frontier, the current bu�ers,the identity of the next node to be created, and the number of nodes left to create.generateNodes :: fNodeg ! Bu�ers ! NodeId ! Int ! [BirthOrDeath]A node is identi�ed by a value of type NodeId. The node also stores: the node'sfuture, the node's past, and the node's shadow.data Node = Node fnodeId :: NodeId, future :: [Operation],past :: [Arc], shadow :: ShadowgEach bu�er holds the arguments waiting to be involved in the application of aparticular operation. Therefore the type Bu�ers is a function taking an operationf to the bu�er for f . A bu�er is a list of arguments, in the order they wereadded.type Bu�ers = Operation ! [Node]Initially, the frontier is empty, the bu�ers are empty, the next node is the �rstnode, and every node still has to be made.generateDug noOfNodes = generateNodes fg (�f � []) initialNodeId noOfNodesGenerating a node. At the core of the algorithm lies a loop. Each iteration ofthe loop is a call to generateNodes, and each call attempts to add a new node tothe current dug. If we have no more nodes to make, we record the deaths of thenodes left in the frontier and bu�ers. All other nodes had their deaths recordedas they left the frontier without entering into a bu�er.

www.manaraa.com

86 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSgenerateNodes frontier bu�ers newNodeId 0 =[Death (nodeId node) (past node) (shadow node) jnode frontier [range bu�ers]If the frontier is too small, we attempt to make a new node using a generatorchosen according to the generation weights of the pro�le.generateNodes frontier bu�ers newNodeId nodesLeftj size frontier < frontierMin =tryApplication (chooseOperationy generationWeights) []frontier bu�ers newNodeId nodesLeftThe function tryApplication attempts to make a node from an operation and alist of version arguments. It also carries through the arguments given to gener-ateNodes.tryApplication :: Operation ! [Node] ! fNodeg ! Bu�ers ! NodeId ! Int ![BirthOrDeath]The function chooseOperation takes some operation weights and returns an oper-ation pseudo-randomly, biased according to the weights. This requires a randomseed, but we omit that argument here, for the threading of seeds clutters the code.Therefore, for the purposes of this presentation of code, consider the function asusing hidden state and hence being impure. All such functions are indicatedby a y superscript. For details on the implementation of these functions, seeSection 4.3.1.chooseOperationy :: f(Operation,Weight)g ! OperationIf the frontier is too large, a node is removed from the frontier. The death of thisnode is recorded, and we repeat the main loop with a call to generateNodes.generateNodes frontier bu�ers newNodeId nodesLeftj size frontier > frontierMax =let (node, frontier') = removeNodey frontierin Death (nodeId node) (past node) (shadow node) :generateNodes frontier' bu�ers newNodeId nodesLeft

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 87The function removeNodey removes a node at random from the frontier, andreturns this node and the new frontier.removeNodey :: Node ! (Node,fNodeg)Otherwise, we choose a node v from the frontier as an argument for a new node.generateNodes frontier bu�ers newNodeId nodesLeftj otherwise =let (v, frontier') = removeNodey frontierin useArgument v frontier' bu�ers newNodeId nodesLeftFor each operation f, we keep a bu�er of version nodes whose head operation isf. We add v to the appropriate bu�er.useArgument :: Node ! fNodeg ! Bu�ers ! NodeId ! Int ! [BirthOrDeath]useArgument v frontier bu�ers newNodeId nodesLeft =let (f : rest) = future vbu�ers' g j g == f = v : bu�ers gj otherwise = bu�ers gin checkBu�er operation frontier bu�ers' newNodeId nodesLeftIf the bu�er of f contains the same number of nodes as the version arity of f, weremove these nodes vs. We then try to make a new node from operation f andversion arguments vs.checkBu�er :: Operation ! fNodeg ! Bu�ers ! NodeId ! Int ![BirthOrDeath]checkBu�er f frontier bu�ers newNodeId nodesLeftj length (bu�ers f) == numberOfVersionArguments f =let vs = bu�ers fbu�ers' g j g == f = []j otherwise = bu�ers gin tryApplication f vs frontier bu�ers' newNodeId nodesLeftj otherwise = generateNodes frontier bu�ers newNodeId nodesLeft

www.manaraa.com

88 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSTrying an application. Recall that the function tryApplication attempts tomake a new node using an operation f and version arguments vs. We apply theguard of f to the shadow of every node in vs to �nd the ranges of possible non-version arguments. If these ranges are empty, we abandon this application usingthe function cleanUpFailure. Otherwise, we make a new node using makeNewNode.tryApplication f vs frontier bu�ers newNodeId nodesLeft =case applyGuard f (map shadow vs) ofFailure ! cleanUpFailure vs frontier bu�ers newNodeId nodesLeftIntSubsets iss ! makeNewNode f vs iss frontier bu�ers newNodeId nodesLeftThe function applyGuard applies the guard of an operation to a list of shadows,and returns the ranges of possible non-version arguments.applyGuard :: Operation ! [Shadow] ! NonVersionArgsIf any of the ranges is empty, applyGuard returns Failure.data NonVersionArgs = IntSubsets [IntSubset] j FailureThe type IntSubset is de�ned in Section 3.21.Cleaning up after a failed application. If an application of the guard ofan operation f to the shadows of the nodes vs fails, we change the nodes vs toreect this using the function chronicleFail. We record the death of any nodewithout a future, return the rest to the frontier, and repeat the main loop bycalling generateNodes.cleanUpFailure :: [Node] ! fNodeg ! Bu�ers ! NodeId ! Int ! [BirthOrDeath]cleanUpFailure vs frontier bu�ers newNodeId nodesLeft =let (deadNodes,liveNodes) = splitWith (null � future) (map chronicleFail vs)obituary = [Death (nodeId node) (past node) (shadow node) jnode deadNodes]in obituary ++generateNodes (frontier [liveNodes) bu�er newNodeId nodesLeftThe function chronicleFail removes the head operation of each node.chronicleFail :: Node ! NodechronicleFail node = node ffuture = tail (future node)g

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 89Making a new node from a successful application. If an application ofthe guard of an operation f to the shadows of the nodes vs succeeds with rangesof possible non-version arguments iss, we choose non-version arguments is, onefrom each set in iss using chooseInt. We change vs to reect this successfulapplication using chronicleSuccess, record the death of any node without a future,and return the rest to the frontier, as in cleanUpFailure. The birth of the newnode is recorded. If the operation is not an observer, the new node is given afuture using the operation bear, and placed in the frontier (if its future is notempty). Otherwise, it dies at birth (but we do not explicitly record the death).We repeat the loop, obtaining a new node identity, and decreasing the numberof nodes left to generate by 1.makeNewNode :: Operation ! [Node] ! [IntSubset] ! fNodeg ! Bu�ers !NodeId ! Int ! [BirthOrDeath]makeNewNode f vs iss frontier bu�ers newNodeId nodesLeft =let is = map (chooseInty poolSize) issnewNode = if role f == Observer then [] else [bear f vs is]vs' = zipWith (chronicleSuccess f is newNodeId) vs (versionArgs f)(deadNodes,liveNodes) = splitWith (null � future) (vs' ++ newNode)obituary = [Death (nodeId node) (past node) (shadow node) jnode deadNodes]in Birth newNodeId f (map nodeId vs) is : obituary ++generateNodes (frontier [liveNodes) bu�er(nextNodeId newNodeId) (nodesLeft{1)The function chooseInt chooses an integer from an IntSubset using the given poolsize.chooseInty :: Int ! IntSubset ! IntTo reect the successful application of an operation f to a node v at argumentposition pos with non-version arguments is to create a new node with identitynewNodeId, we remove the head operation, and record the application as an Arcin the node's past.chronicleSuccess :: Operation ! [Int] ! NodeId ! Node ! Int ! Node

www.manaraa.com

90 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSchronicleSuccess f is newNodeId v pos =v ffuture = tail (future v), past = Arc f pos is newNodeId : past vgThe new node is given an identity tag, a future calculated by the function planusing information contained in the shadow of the new node, an empty past, anda shadow.bear :: Operation ! [Node] ! [Int] ! Nodebear f vs is newNodeId = let newShadow = applyShadow f (map shadow vs) isin Node newNodeId (plan newShadow) [] newShadowThe function applyShadow applies the shadow of an operation to the shadows ofthe version arguments and to the non-version arguments.applyShadow :: Operation ! [Shadow] ! [Int] ! ShadowThe function versionArgs returns the positions of the version arguments of a givenoperation.versionArgs :: Operation ! [Int]Planning the future of a new node. The function plan decides the futureof a new node v using information contained in the shadow of v.plan :: Shadow ! [Operation]The phase of v is given by the shadow of v and the phase arguments.phase = phaser shadow phaseArgumentThe pro�le of this phase determines the node's future. See Section 3.4.3 forfurther details.phaser :: Shadow ! PhaseArg ! PhaseIdmutationObservationWeights :: PhaseId ! f(Operation,Weight)gmortality, pmf, pof :: PhaseId ! DoubleWe �rst decide if we shall mutate v or not, using the mortality. If we are tomutate v, recall from Section 3.3 that the average number of extra mutations ofmutated nodes is pm=(1�pm), where pm is the pmf. We use a Poisson distributionwith this mean to determine how many extra mutations we shall apply to v.

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 91noOfMutns j chancey (mortality phase) = 0j otherwise = 1 + poissony (pmf phase / (1 { pmf phase))The function chance makes a decision based on the given probability.chancey :: Probability ! BoolThe Poisson distribution was chosen because it is well-known, because it rangesover non-negative integers, and because it is simple. Another similar distributionwould also be appropriate.poissony :: Mean ! IntThe pro�le gives the mutation and observation weights together, to relate fre-quency of mutators to frequency of observers. We use the ratio of mutators toobservers to calculate the number of observations we shall apply to v. Section 3.3details how we reach the approximation given in the code below.mutnObtnWgts = mutationObservationWeights phasemutnWgts = [(f,w) j (f,w) mutnObtnWgts, role f == Mutator]obtnWgts = [(f,w) j (f,w) mutnObtnWgts, role f == Observer]noOfObtns = sum [w j (f,w) obtnWgts] /sum [w j (f,w) mutnWgts]The number of ephemeral observations and the number of persistent observationsare calculated directly from the pof.noOfEphmObtns = poissony (noOfObtns * (1 { pof phase))noOfPersObtns = poissony (noOfObtns * pof phase)We use the mutation-observation weights to determine which operations to use forthe planned mutations and observations. Note that these operations are not allthe same, despite the use of replicate, because we have hidden the pseudo-randomchoice within the impurity of chooseOperation.mutns = replicate noOfMutns (chooseOperationy mutnWgts)ephmObtns = replicate noOfEphmObtns (chooseOperationy obtnWgts)persObtns = replicate noOfPersObtns (chooseOperationy obtnWgts)

www.manaraa.com

92 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSThe future of v is therefore the ephemeral observations, followed by the �rst mu-tation (ephemeral, if it exists), followed by a mixture of the remaining mutations(persistent) and the persistent observations, mixed using the function mixy.plan shadow = let mixPersOps [] os = osmixPersOps (m:ms) os = m : mixy ms os. . . de�nitions of phase through persObtns. . .in ephmObtns ++ mixPersOps ms postMutnObtnsBiased choices ensure that the function mixy combines the lists evenly (see Sec-tion 4.3.1).mixy :: [a] ! [a] ! [a]4.1.2 dug EvaluationThe process of dug evaluation is quite straightforward. Unlike dug generation,we encounter no theoretical problems. In practice however, e�ciency is a problem.The dug evaluator sometimes takes more time over input-output and maintaininga lookup table than it does over performing the adt operations. Times taken fordug evaluation therefore vary little between adt implementations, preventing usfrom accurately measuring their relative e�ciencies. In such cases, we can solvethis problem by using a C program to perform the input-output and lookup tablemaintenance. This requires an interface to C that allows C to call Haskell. Weuse an extension to the Green Card package [43]. See Section 4.3.2 for furthertechnical details.De�nition 3.9 de�nes how a dug should be evaluated lazily. When a non-version node is born, its result must be demanded immediately. As the result of anobserver is either of type Int or of type Bool, we demand this value by convertingit to an integer, and adding it to the checksum. This checksum is the result of thedug evaluation. Di�erent implementations of the same observationally-equivalentadt evaluating the same dug should return the same checksum. This may beused to check the correctness of one implementation against the correctness ofanother. An adt that is not observationally equivalent allows many values fora single evaluation of an observation. For example, a bag adt may support anoperation that returns an unspeci�ed element in the bag.

www.manaraa.com

4.1. FROM PROFILE TO BENCHMARK 93while not at the end of the dug �le doread the next birth or deathif we read a birth thenapply an operation to integers and nodes in the frontier, as given by the birthif the operation is an observer thenconvert the result to an integer and add it to the checksumelseadd the resulting node to the frontier�elsewe read a death, so remove the dead node from the frontier�odreport the checksumFigure 4.5: Overview of the dug evaluation algorithm.
An overview of the algorithm is given in Figure 4.5. Fuller details follow,using the types de�ned in Section 4.1.1.The main function takes a list of births and deaths, and returns the checksummade from evaluating the observations.evaluateDug :: [BirthOrDeath] ! IntWe shall read one birth or death at a time. As with dug generation, we shallmaintain a frontier, containing the nodes awaiting further applications. To de�neevaluateDug, we use an auxiliary function evaluateNodes, taking the current fron-tier and the current checksum as auxiliary arguments. Each node is identi�ed bya NodeId and contains just a version of type T Int, where T is the type constructorexported by the adt implementation used to evaluate the dug.evaluateNodes :: (NodeId ! T Int) ! Int ! [BirthOrDeath] ! IntInitially, the frontier is empty, and the checksum is 0.

www.manaraa.com

94 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSevaluateDug dug = evaluateNodes (�n � unde�ned) 0 dugIf there are no more births or deaths to read, we return the checksum.evaluateNodes frontier checksum [] = checksumA birth of an observer node creates a value either of type Int or of type Bool.We convert this value to an integer using resultToInt and add it to the checksum.As we must demand this value immediately, we must explicitly demand its valueusing seq, which evaluates its �rst argument before returning its second argument.evaluateNodes frontier checksum (Birth nodeId f vs is : dug)j role f == Observer =let result = resultToInt (applyOperation f (map frontier vs) is)in seq result (evaluateNodes frontier (checksum + result) dug)If a version node is born, we add the node to the frontier.evaluateNodes frontier checksum (Birth nodeId f vs is : dug)j otherwise =let frontier' nj n == nodeId = resultToNode (applyOperation f (map frontier vs) is)j otherwise = frontier nin evaluateNodes frontier' checksum dugA death of a version node removes the node from the frontier. Recall that we donot record the death of a non-version node.evaluateNodes frontier checksum (Death nodeId arcs shadow : dug) =let frontier' n j n == nodeId = unde�nedj otherwise = frontier nin evaluateNodes frontier' checksum dugThe following functions allow the result of an application of any operation to bemanipulated, whether of type T Int, Int, or Bool.applyOperation :: Operation ! [T Int] ! [Int] ! Result

www.manaraa.com

4.2. FROM APPLICATION TO PROFILE 95data Result = Node (T Int) j Int Int j Bool BoolresultToInt :: Result ! IntresultToInt (Int i) = iresultToInt (Bool b) = fromEnum bresultToNode :: Result ! T IntresultToNode (Node v) = v4.2 From Application to Pro�leWe create a pro�le of a dug from a run of an application as follows:(1) Extract the dug describing how the run of the application uses an imple-mentation of the adt.(2) Calculate the pro�le of this dug.Section 4.2.1 describes (1), and Section 4.2.2 describes (2).4.2.1 dug ExtractionThe task of extracting a dug from the run of an application is quite tricky in alazy language like Haskell. One approach is to modify the compiler. However,as this solution depends on the details of a speci�c compiler, it would not beportable. An alternative approach is to transform the original program into onethat gives the same result, but also produces a dug. We adopt this method.Problems of dug ExtractionHere are two key goals we must achieve by transforming the original program,the problems they pose, and the solutions we choose:� Lazy Evaluation. Whilst recording the operations applied, we must be care-ful not to evaluate anything that was not evaluated by the original program,and to evaluate everything in the same order as the original program. Oth-erwise we may get a di�erent dug, or the resulting program may fail to

www.manaraa.com

96 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSterminate. We only examine something we know has been evaluated to atleast the same degree that we will force.It is possible that some arguments may not be evaluated at all. In suchcircumstances, after the program has �nished, we record any such uneval-uated arguments explicitly in the dug. The dug evaluation and pro�lingalgorithms must accommodate these special nodes. See Section 4.3.2 andSection 4.3.4.� Recording the dug. We must record the dug somewhere. However, side-e�ects are only allowed within the IO monad in Haskell. It would be highlyundesirable to transform every function to work within the IO monad. Nei-ther do we wish to pass information about the dug as a result from everyfunction that calls an adt operation, all the way up to the main function.This would involve changing a lot of code. We avoid this problem by cheat-ing. We interface to a side-e�ecting C function that records the dug in a�le.We cannot however, record arguments of type a, as we do not know ingeneral how to store these. The user could supply a function to convertany value of type a to, say an integer. However, extracting this value couldevaluate the argument more than previously. Therefore we decide not torecord such arguments.The dug Extraction AlgorithmWe modify the application and adt implementation to perform the same task,but produce a dug as a side-e�ect. We do this by wrapping the main function andevery adt operation. The wrapped main function performs some initialization,calls the old main function, and then tidies up the results. Each wrapped adtoperation works with wrapped versions. A version is wrapped with an identitytag. A wrapped operation uses the identity tags to record which nodes were usedin the creation of the new node using which operation. A wrapped operation alsocalls the old operation, and wraps the result into a node with a new identity tag.For example, the list adt of Figure 4.2 provides the type constructor List.The wrapped version datatype for this adt is given by:

www.manaraa.com

4.2. FROM APPLICATION TO PROFILE 97data WrappedList a = Node Int (List a)The wrapped implementation of cons is given by:wrappedCons :: a ! WrappedList a ! WrappedList awrappedCons i v = let nodeId = new node Consin seq nodeId (Node nodeId (cons i (arc v nodeId 1)))where new node is a C function that returns a new identity tag for a node, afterrecording which operation labels this new node. The function arc unwraps andreturns the version argument, after recording the arc from this version node tothe newly created node:arc :: WrappedList a ! NodeId ! Int ! List aarc (Node from v) to position = seq from (seq (new arc from to position) v)where new arc is a C function that returns only unit, after recording the arc,including argument node identity, result node identity, and the position of theargument node.The function wrappedCons is only evaluated when cons would have been eval-uated in the original program. It forces the evaluation of the identity of the newnode, and then returns the wrapped result.However, we do not record any of the arguments yet, as we do not know thatthey will be evaluated. We wrap the version argument with a call to arc. Whenthe version argument would have been evaluated by the original program, wecan examine the identity of the argument. The function arc does this, and thenrecords the arc.We do not wrap the argument to cons of type a for reasons given in theproblems of dug extraction above, but we can wrap arguments of type Int. Thewrapped implementation of lookup is given by:wrappedLookup :: WrappedList a ! Int ! awrappedLookup v i = let nodeId = new node Lookupin seq nodeId (lookup (arc v nodeId 0) (intArg i nodeId 1))The function intArg records the integer argument in the label of this node at thegiven argument position, and returns the integer argument:

www.manaraa.com

98 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSintArg :: Int ! NodeId ! Int ! IntintArg int node position = seq int (seq (int arg int node position) int)where int arg is a C function that returns only unit, after recording the relevantdetails.A general de�nition of a wrapped adt is given in Figure 4.6. Further detailsare somewhat technical. For example, interfacing to the C functions requires useof a package called Green Card [43]. We leave these details to Section 4.3.3.4.2.2 dug Pro�lingAs with dug evaluation, we read one birth or death at a time. The algorithm isquite straightforward.The type of a pro�le is consistent with Section 4.1.1, except that there wasan implicit pro�le in Section 4.1.1, whereas here it is an explicit argument. Forexample, the code mortality phase in Section 4.1.1 becomes mortality (phases pro�lephase) in this section, and similarly with the other pro�le properties.data Pro�le = Pro�le fgenerationWeights :: f(Operation,Weight)g,phases :: (PhaseId ! Phase)gdata Phase = Phase fmutationObservationWeights :: f(Operation,Weight)g,mortality :: Double, pmf :: Double, pof :: DoublegTo calculate the generation weights and the mutation-observation weights, wekeep a note of the number of nodes made by each operation (quali�ed by phasein the case of mutations and observations). To calculate the mortality, we needto keep both the number of nodes not mutated, and the total number of nodes.From this we can calculate the proportion of nodes not mutated: that is, themortality. Similarly, we need to keep a numerator and denominator for the pmfand the pof. All this information is kept in a value of type Pro�leData.data Pro�leData =Pro�leData fgWgts :: f(Operation,Weight)g,phaseDatas :: (PhaseId ! PhaseData)gdata PhaseData =

www.manaraa.com

4.2. FROM APPLICATION TO PROFILE 99
data Tw a = Node Int (T a)fwi :: wT (ti;1)! � � � ! wT (ti;ni)fwi a1 : : : ani�1 =let nodeId = new node wN (fi)in seq nodeId wR(fi wA(a1) : : : wA(ani�1))wherewT (t) = 8<: Tw a; if t = T at; otherwisewN(fi) gives the data constructor that names fiwR(e) = 8<: Node nodeId e; if e has type T ae; otherwise
wA(aj) = 8>>><>>>: arc aj nodeId j; if aj has type Tw aintArg aj nodeId j; if aj has type Intaj; otherwiseFigure 4.6: De�nition of a wrapped adt. For an adt exporting type constructorT and operations fi :: ti;1 ! � � � ! ti;ni , the wrapped adt exports type construc-tor Tw and operations fwi .

www.manaraa.com

100 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSPhaseData fmoWgts :: f(Operation,Weight)g, unmutated :: Int, total :: Int,persMus :: Int, mus :: Int, persObs :: Int, obs :: IntgInitially, the generation weights and mutation-observation weights are all zero,as are the remaining �elds.pro�le :: [BirthOrDeath] ! Pro�lepro�le = let emptyPro�leData =Pro�leData f(f,0) j f operations, role f == Generatorg(�p � emptyPhaseData)emptyPhaseData =PhaseData f(f,0) j f operations, role f /= Generatorg0 0 0 0 0 0in calculatePro�le � foldl gatherPro�le emptyPro�leDataThe function gatherPro�le is folded over the list of births and deaths to calculatethe �nal pro�le data.gatherPro�le :: Pro�leData ! BirthOrDeath ! Pro�leDataThe function calculatePro�le converts the �nal pro�le data into a pro�le.calculatePro�le :: Pro�leData ! Pro�lecalculatePro�le (Pro�leData gWgts phaseDatas) =Pro�le gWgts (calculatePhase � phaseDatas)calculatePhase :: PhaseData ! PhasecalculatePhase (PhaseData moWgts unmutated total persMus mus persObs obs) =Phase moWgts (fromIntegral unmutated/fromIntegral total)(fromIntegral persMus/fromIntegral mus)(fromIntegral persObs/fromIntegral obs)Births of generators are used to calculate the generation weights. The otherbirths are ignored, as the deaths are su�cient to calculate the rest of the pro�le.gatherPro�le (Pro�leData gWgts phaseDatas) (Birth n op vs is)j role op == Generator = Pro�leData (addWgt gWgts op) phaseDatasj otherwise = Pro�leData gWgts phaseDatas

www.manaraa.com

4.2. FROM APPLICATION TO PROFILE 101The function addWgt increases the weight of an operation by one.addWgt :: f(Operation,Weight)g ! Operation ! f(Operation,Weight)gaddWgt wgts op = fif f == op then (f,w+1) else (f,w) j (f,w) wgtsgThe death of a node v a�ects the pro�le of the phase to which v is assigned.gatherPro�le (Pro�leData gWgts phaseDatas) (Death n past shadow) =let phase = phaser shadow phaseArgumentoldPhaseData = phaseDatas phasenewPhaseDatas p j p == phase = gatherPhase oldPhaseData pastj otherwise = phaseDatas pin Pro�leData gWgts newPhaseDatasThe function gatherPhase returns a new phase data using the past of the deadnode v.gatherPhase :: PhaseData ! [Arc] ! PhaseDatagatherPhase (PhaseData moWgts unmutated total persMus mus persObs obs)past =let ops = map targetNodeOp pastms = length [op j op ops, role op == Mutator]os = length [op j op ops, role op == Observer]postMutnObs = length [op j op dropWhile ((/= Mutator) � role) ops,role op == Observer]newMoWgts = foldl addWgt moWgts opsnewUnmutated = if ms == 0 then unmutated + 1 else unmutatednewTotal = total + 1newPersMus = persMus + max (ms{1) 0newMus = mus + msnewPersObs = persObs + postMutnObsnewObs = obs + osin PhaseData newMoWgts newUnmutated newTotal newPersMus newMusnewPersObs newObsThe calculation of the phase is quite straightforward: ops is the list of operationsapplied to v, ms is the number of mutations of v, os is the number of observations

www.manaraa.com

102 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSof v, and postMutnObs is the number of observations occurring after the �rst mu-tation (ie. the persistent observations). The new mutation-observation weightsratio is calculated by adding every operation in ops. If the number of mutationsis zero, then v is not mutated. The number of persistent mutations is one lessthan the number of mutations, if any. The number of persistent observations hasalready been calculated.4.3 Technical DetailsThe algorithms presented in this chapter are implemented in Haskell to createthe tool of Chapter 6. However, for both e�ciency and practical reasons, somere�nements of this code were necessary. That is, some of the code is too slow, andsome is not primitive to Haskell (eg. sets). We shall now detail the key points ofthese re�nements.4.3.1 dug GenerationFrontierThe frontier is presented as a set in Section 4.1.1, but sets are not primitive toHaskell. As we also need to remove a node pseudo-randomly (using removeNode),we need a set adt with random retrieval. As we will never try to add the samenode twice to the frontier, a bag adt with random retrieval will su�ce. A bagwith random retrieval does not require any examination of the elements, and istherefore easier to implement than a set with random retrieval.The implementation of this adt is based on the random-access lists of Okasaki[33]. An element is added using cons. An element is randomly retrieved byrandomly choosing a valid index into the list. The element at this index is thenremoved by updating it with the head of the list, and then taking the tail of theresult.Bu�ersSection 4.1.1 represents the bu�ers as a function from operations to lists of nodes.In practice it is easier to implement the bu�ers as a list of lists of nodes. As the

www.manaraa.com

4.3. TECHNICAL DETAILS 103number of operations is quite small, this is e�cient.Argument Position in DeathSection 4.1.1 uses a function versionArgs to allocate the correct argument positionto the version arguments of an application, recorded in the past of each argument,and subsequently in their deaths. As we restrict every node argument to versionnodes, we actually just record the position of the version argument with respectto other version arguments. So, for example, for the application f i0 v0 i1 i2 v1,we record the argument position of vi as i. This allows us to de�ne versionArgsby:versionArgs :: Operation ! [Int]versionArgs f = [1..]and let the application of zipWith truncate this to the appropriate length.Choice FunctionsAs indicated in Section 4.1.1, the pseudo-random functions must each take a seedas an additional argument, which was left out of the presentation of the algorithmfor the sake of clarity. These seeds are threaded through every function calling apseudo-random function. The pseudo-random number generator was taken from[9]: the \minimal standard random number generator", taken in turn from [42].On recommendations of [41], the multiplier is changed as follows:a = 48271, q = 44488, r = 3399This random-number generator requires a Haskell implementation supportingintegers in the range [�231 .. 231 � 1]. All of the functions implementing somechoice are based on a function rndRng that returns an integer between 0 and agiven ceiling, inclusive of 0 and exclusive of the ceiling.rndRng :: Int ! Int ! IntrndRng ceiling seed = seed `mod` ceilingA seed is simply an integer ranging over [1 .. 231 � 2]. An integer between m andn inclusive can be chosen by m + rndRng (n{m+1).

www.manaraa.com

104 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSThe function chooseInt may choose an integer from: All, which resolves tochoosing an integer between minBound and maxBound; a Pool, which resolves tochoosing an integer between 1 and the pool size; a range m:..:n, which resolves tochoosing an integer between m and n; or a set, which is implemented using a setadt with random-retrieval, implemented simply as an ordered list.The function mix is implemented by choosing one element from each list, withprobability biased according to the length of each list, ensuring an even mixing|to mix a list xs of m elements with a list ys of n elements, elements are takenwith m=(m + n) probability from xs, and with n=(m+ n) probability from ys.The functions poisson, chance, and chooseOperation use a discrete randomvariable with a particular distribution. The functions chance and poisson arecombined in the choice of noOfMutns inside the de�nition of plan to create onerandom variable. The function chooseOperation is a random variable ranging overthe operations, biased according to the given weights.Such a random variable is implemented by creating a cumulative distribution,represented as a list of integers ranging between 0 and some large �xed upperlimit scale. An integer n is chosen between 0 and scale, and the index i of the�rst integer in the list greater than n is the value of the discrete random variable.If the random variable has a range of values of some other type than integer, forexample operation, then an enumeration of the range will allow i to index intothis enumeration.The choice of scale must reect three points:� The larger the value of scale, the more accurate the random variables are.The smallest change in probability that a scale of n can capture is 1=n.� The larger the value of scale, the more chance of bias in values chosenbetween 0 and scale using rndRng scale seed. Recall that rndRng is imple-mented using mod. If a scale of 15� 108 (approximately 2=3 of the largestpossible seed) is used, we would expect more low values than usual, be-cause values from 0 to approximately 7� 108 can each be produced by twodi�erent seeds whereas values above this can each only be produced by oneseed. In practice we observe this bias as producing values with an averageof around 0.4 times the largest value. However, with a scale of 230 (half the

www.manaraa.com

4.3. TECHNICAL DETAILS 105largest possible seed), we should have no bias, and in practice this producesvalues with an average of 0.5 times the largest value, con�rming a lack ofbias.� Ideally, the best value of scale would be the ceiling of the range of seeds,where rndRng scale seed becomes id. Unfortunately, we experience roundingproblems with Int using this value of scale (as it is the largest possible valueof type Int).Therefore, a scale of 230 was used.WeightsA collection of weights is given in Section 4.1.1 as a set of pairs (Operation,Weight),but in practice is implemented as a list [Weight] with the operation given by theindex, when operations are ordered �rst according to role and then alphabetically.Format of dug FilesSection 4.1.1 represents a dug by a list of births and deaths. Within the Haskellworld, this is indeed the representation of a dug. However, if we wish to store adug in a �le, without the use of a special library, we need to store the dug asa sequence of characters. We also compress the dug representation to minimisethe input-output overhead of dug evaluation.A birth is represented as a sequence of integers: the operation identity tag, theidentity tags of the nodes used as version arguments, and the integer arguments.The births are ordered in the �le according to identity tag. Therefore, the identitytag of a new born node is given by its position in the �le. A death is alsorepresented as a sequence of integers: a zero, and the identity tag of the deadnode. Operation identity tags start at 1 to distinguish a birth from a death. Thenumber of integers making up a birth or death is determined by the �rst integer:for a birth it is the number of arguments of the operation plus one, and for adeath it is two. The other �elds of a death given in Section 4.1.1 (outgoing arcsand shadow) are not required for dug evaluation, and can be reconstructed fromthe births for dug pro�ling.

www.manaraa.com

106 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSAn integer i is stored as a sequence of characters: s, xs�1, xs�2, . . . , x0; where0 � s � 4, and i = Ps�1n=0 xn28n; that is, the non-zero 8-bit bytes representing iwith most-signi�cant byte �rst, preceded by the number of these bytes. Note that0 is represented simply by 0. If a character is larger than 8 bits, this representationcould be improved.As the identity tags of the nodes start from 1, we use 0 to represent anunde�ned version argument, whose creation is possible through dug extraction.4.3.2 dug EvaluationTwo versions of dug evaluation were implemented: one wholly in Haskell, andone partly in C and partly in Haskell. The former su�ers from a very largeoverhead of input-output and bookkeeping, leaving the work done by the adtoperations swamped, sometimes yielding unsatisfactory results. The latter cutsdown the overhead to a consistently satisfactory level by implementing everythingbar the adt operations in C. This requires a version of the Green Card foreignlanguage interface [43] that allows C to call Haskell. As such an interface is onlycurrently available for one compiler (York nhc13 [53]), the pure Haskell versionwas kept. See Section 6.1.2 for an estimate of the overhead of dug evaluationfor each version.Typically, a dug evaluator made with Green Card, evaluating a reasonablylarge dug �le (around 100Kb), is around 20 times faster than the same dugevaluator made without Green Card evaluating the same dug �le.Without Green CardThe Haskell version requires two changes from the algorithm presented in Sec-tion 4.1.2.Frontier. Section 4.1.2 represents the frontier as a function. We replace thiswith a �nite map adt, implemented by a data structure very similar to theElevator implementation of random-access lists|see Section 2.2.7.Inlining. The operation applyOperation is fused with each operation of the adtimplementation to remove a layer of interpretation. This creates one right-hand

www.manaraa.com

4.3. TECHNICAL DETAILS 107side of evaluateNodes per operation. For example, for the operation lookup ofFigure 4.2, the following code is used:evaluateNodes frontier checksum (Birth nodeId Lookup [v] [i] : dug) =let result = fromEnum (lookup (frontier v) i)in seq result (evaluateNodes frontier (checksum + result) dug)Note that resultToInt and resultToNode are now redundant, as is the test for theoperation being an observer. Note also that the arguments for lookup are patternmatched out of the lists stored in a birth. The format of a dug �le is more likea list of integers (see Section 4.3.1) and so the pattern matching is more e�cientthan as presented here (the pattern matching is closer to (4:v:i:dug)).Strictness. The strictness of di�erent implementations of the same adt vary ingeneral. This could mean that some operations are forced by one implementationbut not by another. In order to ensure that the dug evaluator for each adtimplementation performs the same amount of bookkeeping, regardless of whichoperations are forced, the bookkeeping is made strict.This means demanding the lookup of a version argument in the frontier, with-out demanding the argument value, and demanding the value of a non-versionargument. This is achieved by wrapping up the version arguments in the frontier:data Node = Node (T Int)and by adding unwrapping of nodes and calls to seq in the de�nition of evalu-ateNodes. For example, the de�nition above becomes:evaluateNodes frontier checksum (Birth nodeId Lookup [v] [i] : dug) =let v' = frontier vNode v" = v'result = fromEnum (lookup v" i)in seq v' (seq i (seq result (evaluateNodes frontier (checksum + result) dug)))Unde�ned Arguments. dug extraction makes unde�ned arguments a possi-bility. dug evaluation gives the value unde�ned to such arguments.

www.manaraa.com

108 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHSWith Green CardThe dug evaluator built using Green Card is a small Haskell program containinginformation speci�c to the adt implementation used. This Haskell program callsa larger, more general C library. Essentially the same algorithm is used in Cto read in and evaluate the dug operations, except that the C program mustsomehow call Haskell functions to perform the operations. Before the Haskellprogram calls the C program, it registers each Haskell adt operation as a stablepointer with the C program. During evaluation, the C program uses these Haskellreferences to call the adt operations. The frontier is implemented as a hash table,and input-output is bu�ered. Note that as the bookkeeping is now in C, it is strict(see the Strictness heading above).4.3.3 dug ExtractionWhilst the dug extracting version of an application is running, a hash tableof every node is maintained. The function new node adds a node to the hashtable, and the functions new arc and int arg update the relevant arguments of thetarget node. After the application has �nished, we traverse the hash table forevery observer node in the order they were created. For each observer node, wetraverse the graph of its predecessors until we reach a previously written node.On the way back to the observer node, we write the birth of every node to thedug �le, in depth-�rst order to ensure all argument nodes are written beforetheir operation nodes.By maintaining a count of how many arcs exist from each node to currentlyunwritten nodes, when a node is no longer an argument of an unwritten node, wewrite the death of this node, as this node has left the implicit frontier. This checkis made every time a node v is reached by a graph traversal from an observernode, whether v is previously written or not.The order in which the nodes are written is maintained, as this de�nes thenode identity tags used by anything reading the dug �le. These node identitytags must be used when writing version argument identity tags. The order inwhich the nodes were actually evaluated is lost (except for preserving the order ofevaluation of observers). This is a direct result of the restriction of De�nition 3.6

www.manaraa.com

4.3. TECHNICAL DETAILS 109constraining the order of evaluation. The actual order of evaluation could bereported, as it may be of interest, but this is not currently implemented.When a node is added to the hash table, every argument is recorded as unde-�ned. If a version argument is still unde�ned after the application has �nished,we write the argument to the dug �le as being unde�ned. Currently, we makeno provision for recording unde�ned non-version arguments: to do so would becostly, without much bene�t; unde�ned non-version arguments are given the value0. Note that this includes the non-version arguments of type a, which we cannotrecord for reasons given in Section 4.2.1.
4.3.4 dug Pro�lingThe only di�erence between Section 4.2.2 and the actual implementation of dugpro�ling is the format of the pro�le. As already indicated in Section 4.3.1, acollection of weights is implemented as a list. Phases are given by a function oftype PhaseId ! Phase in Section 4.3.1, whereas in practice they are given by alist, as PhaseId is an integer, letting the index of the Phase give the PhaseId.dug extraction makes unevaluated arguments a possibility. The dug pro�l-ing algorithm must assign a shadow to an unevaluated version argument, in orderto record the e�ect of any operations on the argument in the correct phase. Theshadow data structure is therefore extended to supply the shadow of any uneval-uated version argument. Nothing more is known about the version argument,for example what other nodes operate on it, yet its e�ect on the pro�le must bede�ned somehow. We de�ne its e�ect separately as follows. The mutations andobservations are counted (in weights, and in the denominators of pmf and pof),because these reect the evaluation of the operation applied to the unevaluatedarguments. None of the mutations and observations are considered persistent, onthe grounds that persistence reects reuse of a data structure, whereas an un-evaluated argument is not even used once. The version argument is not countedas a node, on the grounds that it was never evaluated, and therefore in a sense,it never existed.

www.manaraa.com

110 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS4.4 TestingHow accurate are the implementations of the dug algorithms? How e�cient arethey? From the point of view of implementation, we address these questions foreach algorithm individually in this section. More general questions concerningthe accuracy or usefulness of the benchmarking process as a whole are tackled inChapter 7.As the performance of the algorithms can vary between adts, we conducttests across a few very di�erent adts:� Queue� Random-Access Sequence� Set with Random RetrievalThe queue adt is the simplest of the three. The random-access sequence adtadds the complexity of operations taking integers as arguments. The set adtincludes operations taking more than one version argument, and quite a complexshadow data structure (based on a set itself). We use the York nhc13 compiler[53] (release v0.9.4), running executables in a heap of 80Mb, on an SGI Indyrunning IRIX 5.3.4.4.1 dug GenerationAccuracyThe accuracy of dug generation is important, though the benchmarking tech-niques introduced in Section 5.4 reduce this importance. To measure the accu-racy, we compare the target pro�le with the actual pro�le of the dug generated.We do this for 100 dugs from each of the three adts listed above. Table 4.1 liststhe mean and maximum di�erence for each pro�le attribute. Some inaccuracy isdue to the probabilistic means of generating a dug. For example, if we want halfof the 100 mutations to belong to an operation f , we choose f with probability0:5 for each mutation. We will not always get 50 mutations belonging to f , butthis will be the mean.

www.manaraa.com

4.4. TESTING 111Pro�le Mean MaximumAttribute Di�erence (%) Di�erence (%)Weight 1.4 31.3Mortality 4.4 70.4pmf 0.3 7.5pof 2.4 35.9Table 4.1: The mean and maximum di�erences between target and actual pro�lesof 100 dugs for each of three adts. Each dug has 1000 nodes. We group thegeneration and mutation-observation weights together. Each di�erence is givenas a percentage of the possible range. By normalising the weights ratios, therange of each weight is [0::1], as it is for the other three pro�le attributes.A larger degree of inaccuracy results from the rejection of planned applicationsof operations by the shadow data structure. To take an extreme example, if wewant a dug for lists with no cons operations, then we will not get any tailoperations either, regardless of the target pro�le. To take another example, thelargest di�erence shown in Table 4.1|70.4% di�erence in mortality|is for therandom-access sequence adt. The target pmf for this dug is 0, and so all nodeswill have at most a single mutation planned in their future. The target mutationweights ratio is cons : tail : update = 1 : 1 : 20and so 91% of mutations will be applications of update. A list can only begenerated by empty. However, update cannot be applied to empty. Therefore,91% of the lists generated by empty will not be mutated, and therefore contributeto the mortality. This increases the actual mortality to a value much larger thanthe target mortality.Mortality is also increased by the death of all nodes in the frontier when thedug generation algorithm �nishes. This will be high for large pmf values.E�ciencyThe e�ciency of dug generation is not crucial to the benchmarking process. Byexamining the heap pro�le of dug generation, we �nd that evaluating the future

www.manaraa.com

112 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800 900 1000

M
ax

 L
iv

e
H

ea
p

(K
b)

Max Frontier (number of versions)Figure 4.7: A plot of maximum live heap against maximum frontier for duggeneration on 50 randomly chosen pro�les for each of three adts. Each dug has1000 nodes.
of a new node at the time of creation considerably improves space usage. Theheap size is linear in the size of the frontier. To demonstrate this, Figure 4.7 plotsthe maximum frontier size against the maximum live heap size for the generationof several dugs across three adts listed above. The plot con�rms a general trendof linearity, though there are some surprisingly large heaps, especially for largefrontiers. On closer examination we �nd that every point lying way above theinterpolated line comes from the generation of a dug with a target pmf of 0:95.The target pmf of every dug was chosen from [0; 0:05; : : : ; 0:95]. The dugs withtarget pmf of 0:9 have points that lie a little above the interpolated line, but stillway below those with target pmf of 0:95.We can explain this by considering the amount of space allocated to a node inthe frontier. The future of the node accounts for the majority of this space, thatis, the list of future operations to apply to the node. This list contains mutatorsand observers. The number of mutators has mean pmf=(1� pmf). For a pmf of

www.manaraa.com

4.4. TESTING 1130:9, this is 9; for a pmf of 0:95 however, this is 19, more than twice as many. So,in moving from a pmf of 0:9 to a pmf of 0:95, we double the amount of spaceallocated to each node in the frontier, and hence double the maximum live heap.This accounts for the sudden leap from points with a pmf of 0:9 to those with apmf of 0:95.4.4.2 dug EvaluationAccuracyThe only form of inaccuracy in dug evaluation is that strictness issues may leadto only part of the dug actually being evaluated|see Section 7.3.3.E�ciencyThe e�ciency of dug evaluation is very important in obtaining good bench-marking results. If the overhead of dug evaluation is too great, the accuracy ofestimating the ratio of work done by di�erent adt implementations is reduced.See Section 6.1.2 for a detailed discussion of this issue.4.4.3 dug ExtractionAccuracyThe dug extraction algorithm accurately captures the dug of an application,except for evaluation order, arguments of type a and the sharing of operationstaking no arguments. The actual evaluation order has to be changed to suit therestriction given in the de�nition of a dug, namely that an argument must beordered before its operation. However, this change does preserve the order ofevaluation of observer nodes, and only a�ects the pof attribute of the pro�le.Arguments of type a cannot be extracted for reasons given in Section 4.2.1.Every result of an operation that takes no arguments and whose type doesnot have a class context will be shared. The application will only evaluate suchan operation once, and will share the result. If however, the operation takes noarguments but has a type with a class context, like the empty of the heap adt

www.manaraa.com

114 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

0

50

100

150

200

250

300

0 50 100 150 200 250

O
ve

rh
ea

d
(%

 in
cr

ea
se

)

Dug Size (1000s of nodes)Figure 4.8: Overhead incurred by modifying an application for dug extraction,plotted against size of the extracted dug|12 di�erent applications running on4 di�erent data sets each, over 3 di�erent adts, making 48 points in all.
(see Table 2.3), then the application may re-evaluate the operation, as it restrictsthe operation to a particular instance of the class.
E�ciencyModifying an application to extract a dug as it runs introduces an overhead. Toestimate this overhead, we time several applications both with and without theextraction modi�cation. Figure 4.8 shows the overhead incurred by modifyingan application for extraction. Over the 48 dugs extracted, the average addedoverhead is 75%. The percentage overhead varies signi�cantly according to howmuch work the application does that is not related to the adt|most of theapplications we examine use the adt intensively, so the �gure should be less forother applications.

www.manaraa.com

4.5. SUMMARY 1154.4.4 dug Pro�lingAccuracyThere is no inaccuracy in dug pro�ling, beyond the inaccuracy involved withusing oating point numbers.E�ciencyAs with dug generation, the e�ciency of dug pro�ling is not crucial to thebenchmarking process. As the pro�le is only demanded at the end of analysingthe dug, care must again be taken to evaluate the information gathered as itarrives. A lazier approach would accumulate many suspended computations inthe heap. The heap size is linear in the size of the frontier, as it is with duggeneration. To demonstrate this, Figure 4.9 plots the maximum frontier sizeagainst the maximum live heap size for the pro�ling of several dugs across threeadts listed above. As with dug generation, the plot con�rms a general trend oflinearity.4.5 SummaryWe have de�ned algorithms for creating a benchmark from a pro�le, and calcu-lating a pro�le of an application. The former comprises dug generation and dugevaluation, and the latter comprises dug extraction and dug pro�ling. Thesealgorithms are bundled together to form the core of the benchmarking tool pre-sented in Chapter 6.As well as presenting the algorithms in an abstract manner, we have alsotackled the issues surrounding a concrete implementation in Haskell. We have alsotested the algorithms for accuracy and e�ciency. We shall test the e�ectivenessof the benchmarking process as a whole in Chapter 7.

www.manaraa.com

116 CHAPTER 4. IMPLEMENTING DATATYPE USAGE GRAPHS

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

M
ax

 L
iv

e
H

ea
p

(K
b)

Max Frontier (number of versions)Figure 4.9: A plot of maximum live heap against maximum frontier for dugpro�ling of 50 randomly generated dugs for each of three adts. Each dug has1000 nodes.

www.manaraa.com

Chapter 5
Exploring Datatype Usage Space
Chapter 1 motivated the need for benchmarking results quali�ed by the patternof datatype usage. We proposed to provide these results by constructing a con-venient means of obtaining benchmarks with known patterns of use. Chapter 3showed (a) how to create a benchmark from a description of use, and (b) how tocreate a description of use from an application. Chapter 4 gave algorithms for(a) and (b). But how can we use (a) and (b) to generate and present benchmark-ing results quali�ed by use? The results must not take too long to gather andmust be simple enough to be understood by the user. This chapter explores thisproblem by looking at several possible approaches to a solution.5.1 Exhaustive ExplorationThe most naive solution to providing benchmarking results is to create a bench-mark with every possible pattern of use, and provide a lookup table of timesof each implementation running each benchmark. The user simply obtains thepattern of use of their application, and looks up the quickest implementation inthe appropriate row of the table.We shall assume that a pattern of use consists of a list of n attributes. Thepro�le we de�ned in Section 3.3 that captures the pattern of use has continu-ous attributes. Therefore the space covered by the pro�les is continuous andhence contains an in�nite number of points. Therefore we must divide each at-tribute using a suitable granularity, for example, by rounding the mortality to117

www.manaraa.com

118 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE
2

1

0
0 1 2

Datatype Usage Space

(2,1)

3

Best
Y

A

X

X Y

1

Datatype Usage
Data Structure

0 0 Naive

2 AVL

Figure 5.1: Mapping datatype usage space with two attributes, X and Y . X andY each capture some aspect of datatype usage (not given here). In general wemay have many more dimensions to the coordinate system. The table lists pointsin the space against the best data structure for that use. In general we may listmore about the e�ciencies of data structures than which is best. An applicationmay have datatype usage A, which is nearest to the coordinate (2,1). The tablelists AVL as the best data structure for this datatype usage.
the nearest 0.01. Figure 5.1 shows an example of such a table of results, for pat-terns of use containing just two attributes X and Y , and listing just the quickestimplementation.Unfortunately, this approach is not practical. Such a table would cover a hugenumber of points, and the total time to collect the results for each point would befar too large. For example, consider an adt with just 5 operations (1 generator, 2mutators, and 2 observers). Using the pro�le de�ned in Section 3.3, the pattern ofuse consists of 8 attributes, two of which are redundant (the generation weight,and one of the mutation-observation weights), leaving just 6. Rounding eachattribute very coarsely to give just three possible values gives a total of 36 =729 distinct pro�les. Running even just one benchmark for each pro�le andeach implementation would take a long time. The table would also be huge,and hence rather unreadable, especially if the user wants an overview of whichimplementation to use when.This approach also relies on the accuracy of benchmark generation|that is,how well the pro�le of the generated benchmark matches the desired pro�le.

www.manaraa.com

5.2. SELECTIVE EXPLORATION 119Although benchmark generation is reasonably accurate (see Section 4.4.1), itwould be better to remove this dependency.Summary. Exhaustive exploration is simple and straightforward, but not prac-tical; it takes far too much time to run, generates verbose results, and relies onbenchmark generation accuracy.5.2 Selective ExplorationExhaustive exploration is not practical primarily because the number of patternsof use is exponential in the number of attributes. Even just 6 attributes takingonly 3 possible values each results in 36 = 729 distinct patterns of use.One way to reduce the number of attributes is to remove insigni�cantattributes|those attributes that have little or no e�ect on the performance ofthe adt implementations. Removing such attributes should have little e�ect onthe accuracy of the resulting selective exploration when considered as a summaryof the entire space.But how do we measure the e�ect of an attribute on the performance of adtimplementations? Suppose we measure their performance at a particular pointp in the datatype usage space. Now let p0 be another point obtained from p byaltering the value of a single attribute A. Suppose we now measure the perfor-mance of the adt implementations at p0. If the performance has not changedsigni�cantly from p to p0, then we can conclude, for p and p0 at least, that A haslittle e�ect on performance. By taking a sample of such points, we can conjecturewhich attributes are insigni�cant.But how do we de�ne a signi�cant change in performance? We need somemeans of measuring the correlation between the two sets of performances. Thestandard statistical property correlation coe�cient is de�ned over n pairs of val-ues for x and y by:r = nP xy �P xP yp[nP x2 � (Px)2][nP y2 � (P y)2]and measures how well the two sets of data, if plotted, match a straight line.

www.manaraa.com

120 CHAPTER 5. EXPLORING DATATYPE USAGE SPACEWhat happens if we use the correlation coe�cient over the two sets of perfor-mance times? Unfortunately, this measure can be heavily inuenced by a veryslow adt implementation. For example, suppose the times (in seconds) for onepattern of use were [1; 2; 4; 64], and for another pattern of use, [4; 2; 1; 64] (listingthe times in the same order for each). The correlation coe�cient for these setsof times is 0.997, greater than the correlation between [1; 2; 4; 7] and [1; 2; 4; 9].We are more interested in a small change in the performance of the best imple-mentations than a large change in the performance of the worst implementations.Therefore it is reasonable to consider using the correlation of the reciprocals ofthe times: Times Correlation ofReciprocals[1,2,4,64] [4,2,1,64] -0.055[1,2,3,4] [2,1,3,4] 0.262[1,2,3,4] [1,2,3,64] 0.971[1,1.1,2,3] [1.1,1,2,4] 0.972This means of measuring a signi�cant change in performance seems more reason-able. Those attributes with an average correlation above a given value could beremoved.However, both selective and exhaustive exploration assume that the patternof use is captured entirely by the attributes of a pro�le. Unfortunately, oneimportant pattern of use has proved very hard to capture adequately within apro�le: size. The shadow pro�le can capture size, but selective and exhaustiveexploration assume that a benchmark can be created with the given attributes.However, it is not possible in general to create a benchmark with a given shadowpro�le, only to calculate the shadow pro�le of a given benchmark.The size of a data structure can signi�cantly a�ect the e�ciency of an opera-tion applied to it. For example, performing the operation snoc on a na��ve queuetakes time proportional to the size of the queue (see Section 2.1.1).Summary. Selective exploration improves on the impracticality of exhaustiveexploration when there are su�ciently many insigni�cant attributes. However, in

www.manaraa.com

5.3. CAPTURING SIZE 121common with exhaustive exploration, it does not explore the important attributeof size explicitly.5.3 Capturing SizeSince neither selective nor exhaustive exploration capture the important attributeof size, we look at ways to remove or reduce this insu�ciency.The size of a data structure is determined by the quantity and order of appli-cations of mutators (and by the choice of generator(s)). For example, the moreapplications of cons, the larger the list; and the more applications of cons in suc-cession, the larger the list. The quantity aspect is captured by the weights ratioof a pro�le, but the order aspect is lost. For example, a sequence of n applicationsof cons followed by n applications of tail has the same pro�le as the applicationscons then tail repeated n times. However, the former sequence of applicationshas average size of list n=2, whereas the latter has average size 3=2.We need to capture the order of mutations, but how? We present threeattempts, with their advantages and disadvantages.5.3.1 Growth and DecayA simple way to capture order of mutations is to split the pro�le into phases (seeSection 3.4.3). Phases partition a dug, and the pro�le of each phase is recordedseparately. The partitioning of the dug is based on auxiliary shadow informationstored about each version node (see Section 3.4.1). The shadow information isbased on the history of the version node's creation|that is, which operationscreated it.In particular, we could store the age of a data structure at each version node|the age of a version node being the number of mutators used to create it. Wecould partition the dug into nodes of age A or less, and nodes of age greaterthan A, for some constant A. By setting the ratio of size-increasing operationshigher in the former phase than in the latter, we can create a dug with a growthphase and a decay phase. The size of data structures tends to increase more inthe growth phase than in the decay phase.

www.manaraa.com

122 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE
10

1

2

60

tail

tail

cons

60

5

Grow Phase Decay PhaseGrow Phase Decay Phase

Avg
Size

30 30

cons

Weight Ratio Size

AgeAge

Figure 5.2: An example of growth and decay phasing on lists. The ratio ofcons : tail is 2 : 1 for nodes aged under 30, and 1 : 2 for nodes aged 30 to 60.Assuming lists are generated by empty, and hence start at size 0, nodes aged30 are on average lists of size 10. Nodes aged 60 are on average lists of size 0.Assuming an equal distribution of nodes over age, the average size of a list is 5.
For example, consider phasing a dug over list operations into nodes aged 30or less, and those older. Now set the pro�le of the former phase (the growthphase) to have a weights ratio of cons : tail = 2 : 1, and the latter phase to havecons : tail = 1 : 2. Also make sure that any nodes aged over 60 are not mutated(this can be done by adding a �nal phase for nodes aged over 60 with mortality1). Generating a benchmark with these phased pro�les will make the average sizeof a list about 5|see Figure 5.2.Hence, for controlling the average size of a data structure when generatinga benchmark from a pro�le, growth and decay is useful. Unfortunately, this iscomplicated by the possibility of the number of nodes varying over age. Both pmfand the weights of mutators taking more than one version argument a�ect theincrease or decrease of the number of nodes over age. More importantly, imposingthe structure of growth and decay phases is rather arti�cial: real applications maynot �t this pattern at all.Summary. Growth and decay phasing does control size better than exhaustiveor selective exploration. However it is rather arti�cial, approximate, and doesnot apply very well to real applications.

www.manaraa.com

5.3. CAPTURING SIZE 123
Weight Ratio

Age

Weight Ratio

tail

cons

tail

cons
AgeFigure 5.3: Two linear functions giving weight ratios for lists. Each produce anequal number of applications of cons and tail, but the left one produces applica-tions on larger lists.

5.3.2 Linear WeightsThe growth and decay method su�ers from being rather arti�cial. Why twophases? Why split at a particular age? We can generalise away from thesechoices by approximating each mutator element of the weights ratio by a linearfunction over age. For example, consider making the cons component start highand decrease as age increases, whilst making the tail component start low andincrease as age increases. Also consider making the cons and tail componentsequal and not vary over age. Each of these pro�les will produce the same numberof applications of cons as tail overall, assuming the number of nodes does notvary much over age, but the former will produce larger data structures. SeeFigure 5.3.The pro�le of an application is amenable to this method too. By performinga linear regression (line of best �t) on the number of times a particular mutator isapplied to a node against the age of that node, for each mutator, we will estimatethe trend in the variance of mutator weights over age.Unfortunately, this method has other disadvantages. What about a line ofbest �t that cuts the age axis? The portion of the line below the age axis indicatesa negative weight ratio component. What does this mean? This method wouldneed more formalisation and more examination.Summary. The linear weights method looks promising, but needs further work.

www.manaraa.com

124 CHAPTER 5. EXPLORING DATATYPE USAGE SPACETable 5.1: The e�ect of varying the likelihood of the next operation being thesame as the last (odds of n : 1) for cons and tail on lists, whilst keeping theoverall ratio of cons : tail = 1 : 1.n 2�10 2�9 2�8 2�7 2�6 2�5 2�4 2�3 2�2 2�1 20Avg. Size 1:9 3:4 4:2 5:7 11:8 21:4 37:5 81:8 122:5 142:4 190:621 22 23 24 25 26 27 28 29 210279:2 424:9 530:8 523:1 540:9 657:7 778:4 844:7 1074:2 1221:55.3.3 Markov ChainsThe ideas of growth and decay, and of linear weights, are both rather ad-hoc.A Markov chain [30] is a well-studied method for capturing patterns within se-quences of states. The probability of what the next state in the sequence might bedepends only on what the last state was. We use a Markov chain to parameterisethe mutation weights ratio over the last operation used to create a node.For example, instead of specifying cons : tail = 1 : 1 for a list pro�le, wemight specify that cons ! cons : cons ! tail = n : 1tail ! tail : tail ! cons = n : 1for some n. That is, the number of times a cons is followed by another cons is ntimes more than the number of times a cons is followed by a tail, etc. One canshow that this ultimately yields an overall weights ratio of cons : tail = 1 : 1.Varying n a�ects the average size of a list. The larger n is, the more likelya cons is followed by a cons, and hence the larger the list becomes. Generatingdugs with various values for n produces the results shown in Table 5.1.We could replace the weights ratio by a list of weights ratios parameterisedover the last operation, which we shall call the Markov weights ratios. However,the inuence of size on the e�ciency of a data structure is often separate from theinuence of how often one operation is performed. Hence it would be useful toseparate the Markov weights ratios into the overall weights ratio and other factorssuch as n in the example above. But how do we de�ne these other factors in

www.manaraa.com

5.4. INDUCING DECISION TREES 125general? Given that the Markov weights ratios are used to create the benchmarks,and are the result of pro�ling an application, we also need a way to convertbetween the Markov weights ratios, and the overall weights ratio with otherfactors like n, and back again.We also need to decide whether to parameterise the weights ratio of mutatorsgiven the last operation was a generator. Without this we may lose some infor-mation, and perhaps even distort a pro�le, but with it we add more attributes,and we wish to keep the number of attributes down to a minimum.A Markov chain is often represented by a transition matrix P . The probabilityof moving from state i to state j is given by the probability at row i, column jof P . The Markov weights ratios form the rows of P . If P is both irreducibleand recurrent (see [30]), the average probability pi of being in state i at any timeis obtained by solving pP = p, where p is the row vector with pi at column i.The vector p gives the overall weights ratio. However, in general, P may not beirreducible. This method would need more examination.Summary. Using Markov chains is more theoretically sound than either growthand decay or linear weights, but it increases the number of attributes, whichbrings us back to the problems of exhaustive exploration. It also requires furtherwork on translating between or unifying Markov weights ratios and ordinaryweights ratios.5.4 Inducing Decision TreesRecall that we wish to derive, from a set of benchmarking trials, rules for de-termining the best data structure according to the datatype usage attributes. Acommon way to derive rules about a set of data is to induce a decision tree [44].For our purposes, a decision tree is a binary tree with the following properties:� Each branch node is labelled with a test of the form A � v, where A is adatatype usage attribute, and v is some constant.� Each leaf node is labelled with the name of an adt implementation.An example of a decision tree is shown in Figure 5.4. To �nd the recommended

www.manaraa.com

126 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE
<= 20size

True

True

True

False

Folder

Stack <= 0.2

<= 0.2insert

lookup

File

File

False

False

Figure 5.4: Decision tree for an (imaginary) adt storing a collection of papers.Branch nodes are labelled with tests over datatype usage properties: size, lookup,and insert. Leaf nodes are labelled with adt implementations: Stack, Folder,and File.
implementation for a particular datatype usage, start at the root and follow theappropriate branches till you reach a leaf. The implementation given by this leafis the one recommended by this decision tree.A decision tree is induced from a training set of the data it is to characterise.In our case, this training set is a sample of benchmarks. The sample is generatedfrom a random selection of attribute values, but it is the attributes of the resultingbenchmarks that are used, thereby including the attributes of both the pro�leand the shadow pro�le. Each benchmark in the sample is run, and the winningimplementation is recorded. From these results, we induce a decision tree T .Given any benchmark B from the sample, using only the attributes of B, T willdecide upon the winning implementation. Table 5.2 gives an example of resultsfrom which the decision tree of Figure 5.4 can be induced.Given a su�ciently large and broad sample, the decision tree induced shouldbe able to predict the winning implementation of any benchmark with goodaccuracy.Summary. Inducing a decision tree solves all of the problems of exhaustive andselective exploration: size is captured in the shadow pro�le of the benchmark; theaccuracy of benchmark generation has much less signi�cance, since we use theactual pro�le rather than the desired pro�le; and every single benchmark is used

www.manaraa.com

5.4. INDUCING DECISION TREES 127Datatype Usage Attributes Bestinsert lookup size Implementation0.3 0.5 10.0 Stack0.1 0.1 40.0 Folder0.4 0.1 45.0 File0.3 0.1 36.0 File0.3 0.3 30.0 File0.1 0.4 42.0 File0.1 0.5 33.0 FileTable 5.2: A training sample of results from which the decision tree of Figure 5.4can be induced.to inuence the resulting decision tree, giving maximum use of the user's time.The only possible drawback concerns the accuracy of the resulting tree on unseenbenchmarks. We choose to use this method, as it is by far the most promisingone.5.4.1 The AlgorithmWe take an existing algorithm from the literature for constructing a decision treefrom a sample. We use the algorithm c4.5 [46], which is a descendant of id3[44]. Both algorithms are widely known and respected in the machine learningcommunity.The basic idea underlying c4.5 is a simple divide and conquer algorithmdue to Hunt [23]. Let S be the results of running a sample of benchmarks.Let I1; : : : ; Ik be the competing adt implementations. There are two cases toconsider:� S contains only results reporting a single implementation Ij as the winner.The decision tree for S is a single leaf labelled with Ij.� S contains results reporting a mixture of winners. By dividing S into S1and S2 according to some test, we can recursively construct trees T1 and T2from S1 and S2 respectively.

www.manaraa.com

128 CHAPTER 5. EXPLORING DATATYPE USAGE SPACEThe key to a good implementation of Hunt's algorithm is the choice of test withwhich to split S.The set of possible tests is limited by the range of attribute values for bench-marks in S. Let [v1; : : : ; vn] be the distinct values, in order, of an attribute Afor benchmarks in S. Consider two consecutive values, vi and vi+1. For any vsatisfying vi � v < vi+1, splitting S with the test A � v results in the samesplit. Therefore, there are at most n� 1 distinct ways of splitting S using A. Weconsider only the tests A � (vi + vi+1)=2.For example, Table 5.2 gives a sample S which contains results reporting amixture of winners. We could choose to split S with the test size � 20, as inthe decision tree of Figure 5.4. Note that 20 is halfway between the next lowestand the next highest value of size in S. This test splits S into two samples, S1and S2, from which we induce two decision trees T1 and T2 in the same manner.The sample S1 contains just a single result reporting Stack as the winner. Thedecision tree for S1 is a single leaf labelled with Stack. The sample S2 containsresults reporting a mixture of winners, and so we choose another test to split S2,and so on.But how do we choose which test to use at each stage? id3 uses the gain cri-terion to measure the quality of a test, whereas c4.5 uses the gain ratio criterion.The latter is a modi�cation of the former, so we shall describe both.Gain CriterionThe gain criterion is based on the following principle of information theory: Fora message that happens with probability p, the information conveyed by thatmessage is � log2 p bits. For example, the information conveyed by making anyone of eight equally probable messages is � log2(1=8) or 3 bits.Suppose we choose a benchmark from a sample S and announce, correctly,that the winning implementation for that benchmark is I. The probability of thisannouncement is jSI j=jSj, where SI is the subset of S containing the benchmarksthat give I as the winner. The information conveyed by that announcement istherefore � log2(jSIj=jSj) bits.The expected value of a function f applied to a discrete random variable X

www.manaraa.com

5.4. INDUCING DECISION TREES 129is E(f(X)) =X f(x)P (X = x)Let X be the winning implementation of a benchmark chosen from S. Let f(I)be the information conveyed by an announcement of the value of I. For anyimplementation If(I) = � log2 jSI jjSj and P (X = I) = jSI jjSjThe expected information of an announcement of the winning implementation ofa benchmark in S is thereforeinfo(S) = E(f(X)) = � kXj=1 �log2 jSIj jjSj � � jSIj jjSjThis expresses the average amount of information needed to identify the winnerof a benchmark in S.Suppose we split S into S1 and S2 using some test Z. LetX = i if a benchmarkchosen from S lies in Si. Let f(i) be the average amount of information neededto identify the winner of a benchmark in Si. For i = 1; 2f(i) = info(Si) and P (X = i) = jSijjSjTherefore the expected information required to identify the winner of a bench-mark in S split by Z into S1 and S2 isinfoZ(S) = E(f(i)) = 2Xi=1 info(Si) � jSijjSjThe di�erence between the expected information required before and after ap-plying the test Z is thereforegain(Z) = info(S)� infoZ(S)Hence gain(Z) measures the information gained by performing the test Z. Thegain criterion chooses the test with the maximum gain.For example, consider the sample S of Table 5.2, which contains one resultreporting Stack as the winner, one result reporting Folder as the winner, and �veresults reporting File as the winner.info(S) = � �17 � log2 17 + 17 � log2 17 + 57 � log2 57�= 1:149 bits

www.manaraa.com

130 CHAPTER 5. EXPLORING DATATYPE USAGE SPACEThe test Y , lookup � 0:2, splits S into a sample SY1 containing one Folder resultand two File results, and a sample SY2 containing one Stack result and three Fileresults. infoY (S) = 37 info(SY1) + 47 info(SY2)= �37 �13 log2 13 + 23 log2 23�� 47 �14 log2 14 + 34 log2 34�= 0:857 bitsgain(Y) = info(S)� infoY (S)= 0:292 bitsThe test Z, size � 20, splits S into a sample SZ1 containing just one Stack result,and a sample SZ2 containing one Folder result and �ve File results.infoZ(S) = 17 info(SZ1) + 67 info(SZ2)= �17 � 11 log2 11 � 67 �16 log2 16 + 56 log2 56�= 0:557 bitsgain(Z) = info(S)� infoZ(S)= 0:592 bitsTherefore, as the gain from using Z is larger than the gain from using Y , thegain criterion would prefer the test Z over the test Y .Gain Ratio CriterionThe algorithm id3 uses the gain criterion, giving quite good results. However,the gain criterion has a strong bias towards tests with many possible outcomes.The algorithm c4.5 attempts to remove this bias by modifying the gain crite-rion to produce the gain ratio criterion. Even though we only consider testswith two outcomes, Quinlan advises that the gain ratio criterion \even appearsadvantageous when all tests are binary" [46].Consider the information content of an announcement of the result of a testZ applied to a benchmark in S. Let Z split S into the subsets S1; : : : ; Sn. LetSX be the subset into which Z places a benchmark chosen from S. Let f(X) bethe information conveyed by an announcement of the value of X. For 1 � j � nf(j) = � log2 jSjjjSj and P (X = j) = jSjjjSj

www.manaraa.com

5.4. INDUCING DECISION TREES 131The expected information of such an announcement is thereforesplitInfo(Z) = E(f(X)) = � nXj=1 �log2 jSjjjSj � � jSjjjSjThis expresses the amount of information gained from dividing S into S1; : : : ; Sn,irrespective of the winning implementations. Therefore the gain ratio de�ned bygainRatio(Z) = gain(Z)splitInfo(Z)expresses what proportion of the information gained by splitting S using Z isrelevant to the identi�cation of a winning implementation. However, if the splitis near-trivial|that is, some Si is almost as large as S|the split information willbe small, and the gain ratio unstable. Therefore, the gain ratio criterion choosesthe test with the maximum gain ratio, subject to the constraint that the gain islarge|at least as great as the average gain over all tests examined.For example, consider again the sample S of Table 5.2. The test Y , lookup �0:2, splits S into a sample containing three results and a sample containing fourresults. splitInfo(Y) = � �37 log2 37 + 47 log2 47�= 0:985 bitsFrom the previous section we know thatgain(Y) = 0:292 bitsSo gainRatio(Y) = gain(Y)splitInfo(Y) = 0:296The test Z, size � 20, splits S into a sample containing one result and a samplecontaining six results.splitInfo(Z) = � �17 log2 17 + 67 log2 67�= 0:592 bitsFrom the previous section we know thatgain(Z) = 0:592 bitsSo gainRatio(Z) = gain(Z)splitInfo(Z) = 1

www.manaraa.com

132 CHAPTER 5. EXPLORING DATATYPE USAGE SPACETherefore, assuming both tests have gain at least as large as the average gainover all tests examined, as the gain ratio from using Z is larger than the gainratio from using Y , the gain ratio criterion would also prefer the test Z over thetest Y .5.4.2 Simplifying Decision TreesThe decision tree induced by the algorithm of Section 5.4.1 classi�es the resultsof a sample perfectly. Unfortunately, this tree is not an ideal basis for choosingan implementation for the following reasons:� The tree may be very large and complex.� The tree is based on the chosen sample and may be over-speci�c.Therefore we prune the induced tree to obtain a smaller and more accurate tree.There are several ways to prune a tree. We examine two, taken from existingliterature, each based on the pruning scheme given in Figure 5.5. This schemeconsiders all subtrees bottom-up. If replacing a subtree with either one of itschildren or with a single leaf does not increase the predicted error of the subtree,it is pruned to this smaller tree. The two pruning techniques we consider di�erin how they predict the error of a tree.Reduced Error PruningQuinlan describes reduced error pruning in [45]. Two separate samples are re-quired to perform reduced error pruning: a training sample, from which theoriginal tree is induced; and a test sample, used to assess the accuracy of theinduced tree.Referring to the pruning scheme of Figure 5.5, we prune the induced tree usingthe test sample. The predicted error of a subtree on a subset of the test sampleis simply the number of misclassi�cations made by the subtree when applied tothe test sample subset.If in addition to recording the winning implementation for a particular bench-mark we also record the ratio of the time of every implementation to the timeof the winning implementation, we may instead de�ne the predicted error of a

www.manaraa.com

5.4. INDUCING DECISION TREES 133

To prune a tree T using the sample S:if T is a branch node with children L and R, and labelled with test Z thenlet Z split S into SL and SRprune L using the sample SL to give LPprune R using the sample SR to give RPpredict the errors of the following trees on the sample S:a branch node with LP and RP as children, and labelled with test ZLPRPevery possible leaftake the trees with the lowest predicted errorreturn the smallest such treeelseT is a leaf, so return T untouchedFigure 5.5: Generic pruning scheme based on error prediction.

www.manaraa.com

134 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE
(a) Datatype Usage Attributes Bestinsert lookup size Implementation0.3 0.5 10.0 Stack0.1 0.1 40.0 Folder0.4 0.1 45.0 File
(b) Datatype Usage Attributes Bestinsert lookup size Implementation0.3 0.1 36.0 File0.3 0.3 30.0 File0.1 0.4 42.0 File0.1 0.5 33.0 FileTable 5.3: To illustrate reduced error pruning, a split of the sample of Table 5.2into (a) a training sample, and (b) a test sample.subtree to be the average ratio of the implementation given by the subtree as thewinner.For example, consider the sample S of Table 5.2. We need two samples toperform reduced error pruning, so we split the sample into a training sampleconsisting of the �rst three results, and a test sample consisting of the remainingfour results. Tables 5.3(a) and 5.3(b) give these samples. Figure 5.6 shows thetree we induce from the training sample, using either the gain criterion or thegain ratio criterion.

Folder

True

True

False

File

Stack> 0.25

<= 0.3

insert

lookup
False

Figure 5.6: Decision tree induced from the training sample of Table 5.3(a).

www.manaraa.com

5.4. INDUCING DECISION TREES 135To prune this tree, we �rst prune the left branch L, labelled with the testinsert > 0:25. Following the pruning scheme of Figure 5.5, we then considerthe predicted error of L and of each of the three possible leaves. Reduced errorpruning calculates the predicted error of a replacement for a subtree by applyingthe replacement tree to the subset of the test sample covered by the originalsubtree. In the absence of any ratio information in the sample S, we use thenumber of misclassi�cations to measure the error of a tree in application.The subset of the test sample covered by L contains the �rst and secondresults of Table 5.3(b), which are both File results. The subtree L misclassi�esboth of these results as Folder. The leaves Folder and Stack also misclassify bothresults. The leaf File however classi�es both correctly. As this tree has the lowestpredicted error, it replaces L.Now we consider the predicted error of the original tree with L replaced by theleaf File (call this tree T 0), and each of the three leaves, when applied to the wholetest sample. The tree T 0 correctly classi�es two results as File, but misclassi�esthe other two results as Stack. The leaves Folder and Stack misclassify everyresult of the test sample. The leaf File classi�es every result in the test samplecorrectly, and so this replaces the original tree. Therefore, reduced error pruningsimpli�es the original tree to the leaf File.Very Pessimistic PruningQuinlan describes pessimistic pruning in [45]. He also describes a \far more pes-simistic" pruning technique in [46]. The latter technique we call very pessimisticpruning, in the absence of any name given by Quinlan. Whereas reduced errorpruning predicts the error of a tree induced from a training sample by evaluatingthe tree on an additional test sample, very pessimistic pruning uses only a singletraining sample. This is useful when the data for a sample is scarce or expensiveto collect.Very pessimistic pruning estimates the error of a tree based on statisticalreasoning that \should be taken with a large grain of salt" [46]. Consider theN cases classi�ed by a leaf, E of which are classi�ed incorrectly. We predict theerror rate with con�dence level CF to be UCF (E;N), the upper con�dence limit

www.manaraa.com

136 CHAPTER 5. EXPLORING DATATYPE USAGE SPACEfor the binomial distribution, de�ned for X � B(N; p) byUCF (E;N) = p, P (X � E) = CFSee [46] for justi�cation of this prediction.We predict the number of errors produced by a leaf covering N cases to beN � UCF (E;N). We predict the number of errors produced by a tree to be thesum of the errors produced by its children.For example, consider the sample S of Table 5.2. Using either the gain crite-rion or the gain ratio criterion, we induce the tree of Figure 5.4. To apply verypessimistic pruning to this tree, we follow the pruning scheme of Figure 5.5 by�rst pruning the right branch R, labelled with the test lookup � 0:2. To prune R,we must �rst prune its left child, RL. However, using the default con�dence levelof 25%, very pessimistic pruning leaves RL untouched. We shall not give detailshere, but instead we will give details of the more interesting case of pruning R.The subtree R covers all bar the �rst result of the sample S, containingone Folder result, and �ve File results|call this subset S 0. To prune R, weconsider the predicted error of R, of RL, and of each of the three possible leaves,when applied to the sample S 0. The leaf File misclassi�es one result out of six.Therefore, very pessimistic pruning predicts the error of this leaf as 6�U0:25(1; 6) =6 � 0:389 = 2:337. The leaf Folder misclassi�es �ve results out of six, so thepredicted error of this leaf is 6 � U0:25(5; 6) = 5:719. The leaf Stack is evenworse. The tree RL misclassi�es two out of three results on its left branch,and classi�es correctly all three results on its right branch, so the predictederror of this tree is 3 � U0:25(1; 3) + 3 � U0:25(0; 3) = 3:131. The tree R doesnot misclassify any of the results, and contains a leaf covering one result, a leafcovering two results, and a leaf covering three results, so the predicted error isU0:25(0; 1) + 2 � U0:25(0; 2) + 3 � U0:25(0; 3) = 2:860. Therefore, very pessimisticpruning replaces R with the leaf File, as this has the lowest predicted error.We next consider pruning the original tree with R replaced with the leaf File.We omit the details here, but very pessimistic pruning does not change this tree.Therefore, it is the �nal result of pruning.

www.manaraa.com

5.5. SUMMARY 1375.5 SummaryIn this chapter we have explored ways of using the dug algorithms of Chap-ter 4. Exhaustive exploration is the most na��ve solution, but takes too long torun. Selective exploration reduces this time, but does not capture the importantattribute of size well enough. The growth and decay, linear weights, and Markovchains methods each capture size better, but introduce problems of their own.Finally, the induction of decision trees solves the problems of the previous meth-ods, and looks promising. We evaluate the e�ectiveness of decision tree inductionin Chapter 7. The implementation of decision tree induction is straightforward,and detailed in [46].

www.manaraa.com

138 CHAPTER 5. EXPLORING DATATYPE USAGE SPACE

www.manaraa.com

Chapter 6
Auburn: Benchmarking Tool
Chapter 4 gave algorithms for (a) creating a benchmark from a description of use,and (b) creating a description of use from an application. Chapter 5 illustratedhow to use these algorithms to benchmark implementations of an adt. Thischapter describes the design decisions for a benchmarking kit called Auburn,built on the algorithms of Chapter 4, and the principles of Chapter 5. Thischapter also details how to use Auburn.Section 6.1 discusses the overall design of Auburn. Section 6.2 gives anoverview of how the di�erent parts of Auburn �t together. Sections 6.3{6.8describe each part of Auburn, both the design decisions and the instructions foruse by hand. Section 6.9 shows how Auburn can almost completely automatebenchmarking.Appendix C gives a reference for the Auburn executables.6.1 Design RationaleAuburn should provide the following functionality:� dug generation� dug evaluation� dug pro�ling� dug extraction 139

www.manaraa.com

140 CHAPTER 6. AUBURN: BENCHMARKING TOOL6.1.1 Dynamic LinkingCan we bundle each task above into one executable for all adts? Unfortunatelynot, for the following reasons. A dug evaluator must link with the various im-plementations for the di�erent adts Auburn encounters. Without some form ofdynamic linking, which current Haskell implementations do not provide, we mustre-compile a dug evaluator for each new adt and its implementations.Can we bundle the remaining tasks into one executable for all adts? Unfortu-nately not, since dug generation and dug pro�ling must link with a user-de�nedshadow data structure, speci�c to an adt. The process of dug extraction, how-ever, does not require any linking with code speci�c to an adt, and can becompiled once for all adts.Decision: Generate an executable speci�c to each adt for the generation, eval-uation, and pro�ling of dugs, and de�ne one executable for all adts for dugextraction.6.1.2 Overhead of dug EvaluationWhen an implementation of an adt evaluates a dug, there is some overhead:general bookkeeping, input, and output. The larger the overhead, the smallerthe proportion of the whole time taken by the adt operations, and hence the lessaccurate the estimation of the work done by them. Therefore we want to keepthe overhead of dug evaluation as small as possible.We consider three alternative methods for dug evaluation.1. Generate the dug, and translate each node directly into a Haskell call toan adt operation. Output and compile the Haskell program. To evaluatethe dug, run the program. The only overhead of dug evaluation comesfrom the mechanism for demanding the results of the observations.2. Generate and evaluate the dug within the same executable. The generationof the dug forms most of the overhead of dug evaluation.3. Read the dug from a previously generated �le. Reading the �le and generalbookkeeping form most of the overhead of dug evaluation.

www.manaraa.com

6.1. DESIGN RATIONALE 141

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

C
om

pi
la

tio
n

T
im

e
(s

)

Size of Dug (number of nodes)Figure 6.1: Times taken to compile di�erent dugs (as Haskell programs) of var-ious sizes over three di�erent adts.
In order to compare these three methods, we measure the overheads for a randomselection of dugs for three adts: queue, random-access sequence, and set withrandom retrieval (as in Section 4.4). We use the York nhc13 compiler [53] (releasev0.9.4) running executables in a heap of 80Mb on an SGI Indy running IRIX 5.3.Method 1 generates Haskell programs that take too much space and time tocompile. Figure 6.1 shows the compilation times of dugs of various sizes. Therelationship is roughly linear. The largest dug we can compile in a heap of80Mb takes over 15 minutes to compile and has 800 nodes. This compares withtaking about 1 second to generate the same dug in a heap of 4Mb. The moredugs we evaluate, the better conclusions we can form about the e�ciency of theimplementations. Since compiling a dug is so slow, we reject Method 1.For Method 2, the overhead of dug evaluation is the cost of dug generation.We cannot measure the cost of dug generation directly, because we must pro-cess the dug in some way in order for lazy evaluation to force its generation.Therefore, we make three di�erent timings:

www.manaraa.com

142 CHAPTER 6. AUBURN: BENCHMARKING TOOL1. The time taken to generate and output the dug as a binary �le2. The time taken to generate and output the dug as a Haskell program3. The time taken to generate and output the dug as a binary �le and alsoas a Haskell programWe can estimate the time taken to generate the dug by adding Time 1 and Time2 and then subtracting Time 3.To estimate the cost of dug evaluation, we read the dug from a binary �le,and evaluate the dug with each implementation, including the null implemen-tation. The null implementation performs very little work (see Section 6.7). Bymeasuring the time taken to evaluate with the null implementation, we obtain anestimate of the overhead involved in evaluating with some real implementation.By subtracting this estimate of the overhead, we obtain an estimate of the actualcost of evaluating with some real implementation.For some dug D and some implementation I, let g be the time taken togenerate D, let eN be the time taken to evaluate D with the null implementation,and let eI be the time taken to evaluate D with implementation I. For Method 2,the overhead of dug evaluation is the time taken to generate the dug dividedby the total time to generate and evaluate the dug, that is g=(g + eI � eN).Note that we subtract the null implementation time, since this includes all of theoverhead of reading the dug from a �le, which would not be done in Method 2.For Method 3, the overhead of dug evaluation is eN=eI .Additionally, for Method 3, we also time dug evaluation using the C-Haskellhybrid described in Section 4.1.2.Note that we are only estimating the overhead, as for instance, the overheadof the mechanism for extracting the results of the observations is present in bothMethod 2 and Method 3, but subtracting the null implementation time removesthis overhead from our estimate of the overhead of Method 2. However, makinga closer estimate is very hard, as lazy evaluation makes it very hard to separatetasks and measure them individually.Table 6.1 gives the results. An overhead as large as 98% would make thebenchmarking results rather inaccurate. Similarly, even 87% may be unaccept-able. We therefore choose to evaluate dugs by reading them from �les, using the

www.manaraa.com

6.1. DESIGN RATIONALE 143adt Method 2 Method 3 Method 3(Haskell) (C/Haskell)Queue 98.1 87.4 40.3RASeq 96.5 82.4 25.6Heap 99.0 90.3 29.0Average 97.9 86.7 31.6Table 6.1: Average percentage overhead for each method of dug evaluation overevery combination of 10 dugs and 7 implementations for each of the three adts.C-Haskell hybrid where possible (some compilers do not support the necessarylanguage extension).Decision: Separate dug generation and dug pro�ling from dug evaluation. Adug is generated, written to a �le, and then read and evaluated.6.1.3 Describing dugsSince we have decided to store dugs in a compressed format in a �le, we needanother format for dugs which the user can understand. Both a textual and avisual description serve this purpose well. Since we are compiling dug generationand dug pro�ling for each adt, we decide to bundle these functions and thetextual and visual description functions into one executable.Decision: Generate a dug manager for each adt which performs the followingtasks: dug generation, dug pro�ling, and dug description (both textual andvisual).6.1.4 Re-compilationdug ManagerGenerating and compiling a dug manager for each adt re-compiles a lot ofsimilar functions. These common functions should be compiled just once, so weplace them in a library.

www.manaraa.com

144 CHAPTER 6. AUBURN: BENCHMARKING TOOLDecision: Create a library of the functions common to every dug manager. Adug manager contains only the de�nitions of functions speci�c to the adt|itimports the rest from the library.dug EvaluatorWe could generate one dug evaluator for all implementations of an adt, usingeither Haskell's class system, or generate one copy of the dug evaluating functionfor each implementation. However, this would have to be re-compiled if a newimplementation were introduced, or if an implementation was changed. It issimpler to generate one dug evaluator for each implementation.Decision: Generate a dug evaluator speci�c to each implementation of eachadt.6.2 Overview of AuburnAuburn uses a signature (Section 6.3) to identify an adt. From the signature ofan adt, Auburn can provide a dug manager (Section 6.4) speci�c to that adt.The dug manager can generate a dug from a pro�le (Section 6.4.1), calculatea pro�le from a dug (Section 6.4.2), and create a visual or textual descriptionof a dug (Section 6.4.3). In order to generate a dug from a pro�le, the dugmanager requires a shadow data structure (Section 6.5) for the same adt. Froma signature, Auburn can provide a trivial shadow data structure (Section 6.5.1),or guess at a size-based shadow data structure (Section 6.5.2).From the signature of an adt and the name of an implementation of theadt, Auburn can also provide a dug evaluator (Section 6.6) speci�c to the adtand the implementation. From the same signature, Auburn can provide a nullimplementation of the adt (Section 6.7), performing as little work as possible.This is useful for estimating the overhead of dug evaluation.From the signature of an adt, the name of an implementation of the adtand the name of an application using that implementation, Auburn can providea dug extracting version of the application (Section 6.8). The application works

www.manaraa.com

6.3. ADT SIGNATURE 145
2455 lines

1577 lines 1327 lines 62 lines
Auburn_EvalFMap

Creates

Imports

Auburn_Man

auburn

Auburn_Bmark

NullSig Shadow SigSig Imp_Eval_Sig_Bmark

Sig_Man

Figure 6.2: Structure of Auburn.
exactly as before, but also produces a dug of how it uses the implementation ofthe adt.Auburn also provides automation tools (Section 6.9) for generating and usingall of the above, saving a lot of user e�ort.The Auburn package contains a main executable auburn (Sections 6.3{6.8)and other executables to automate the use of auburn (Section 6.9). Figure 6.2shows the components of Auburn, and how they relate to each other. The �guregives the size of any component that is not generated; the size is the number oflines of Haskell.Appendix C gives the help information provided with each Auburn executable.6.3 adt SignatureThe whole process of benchmarking described in Chapters 3{5 is based on com-paring di�erent implementations of the same adt. The de�nition and implemen-tation of dugs in Chapters 3 and 4 refers primarily to the adt, and secondly tothe implementations. Therefore, Auburn needs a description of the adt to workwith.An adt is identi�ed by giving its signature. An adt signature looks just likean implementation but contains no code|just an export declaration, and onetype signature for each exported operation. Figure 6.3 gives an example of asignature. The adt must be simple, as given by De�nition 3.3.

www.manaraa.com

146 CHAPTER 6. AUBURN: BENCHMARKING TOOLmodule List (List,empty,catenate,cons,tail,head,lookup,isEmpty)whereempty :: List acatenate :: List a -> List a -> List acons :: a -> List a -> List atail :: List a -> List ahead :: List a -> alookup :: List a -> Int -> aisEmpty :: List a -> BoolFigure 6.3: Haskell code giving the signature of a simple list adt providingnormal list operations, catenation and indexing.
Auburn can generate a signature of the simple operations common to any setof implementations with:auburn -c fImplementation Filesg fSignature FilegFor example,auburn -c NaiveList AVLList Listcreates a signature �le List.sig from the simple operations common to theimplementations stored in the �les NaiveList.hs and AVLList.hs. Operationsthat are not simple, or not exported by every implementation, are not included.If an implementation exports every operation in a signature, but also exportsan operation that is not included in the signature, the implementation can stillevaluate a dug made for that signature, though of course only the operationsincluded in the signature will be used. An application importing the imple-mentation may have its dug extracted, so long as the application only importsoperations found in the signature.The signature �le of an adt is used by Auburn to perform every task speci�cto that adt: dug generation, dug evaluation, dug pro�ling, dug extraction,and dug description.

www.manaraa.com

6.4. DUG MANAGER 1476.4 dug ManagerA dug manager processes dugs; generating, pro�ling, and describing them.Auburn can generate a dug manager speci�c to an adt from the signature ofthe adt:auburn -m fSignature FilegFor example,auburn -m Listmakes a dug manager List Man.hs from the signature �le List.sig.As discussed in Section 6.1.4, the generated �le contains all of the code relevantto the adt. The remaining code is imported from a library. The generation ofa dug manager is straightforward. The dug manager may be compiled (linkingwith a shadow data structure, see Section 6.5) to produce an executable.6.4.1 dug GeneratingThe dug manager can generate a dug from a pro�le with:Sig Man -g fProfileg fSeedg -o fdug Filegwhere the seed is used for pseudo-random number generation. The dug is writtento a �le; using the ag -oP pipes the dug to standard output. The pro�le is givenusing a Haskell data structure as follows:Profile fGen. Wgt. Ratiog fPhasesgwhere fPhasesg is a list of phased pro�les, starting from phase 1 in order, eachgiven using the following Haskell data structure:Phase fMut-Obs. Wgt. Ratiog fMortalityg fpmfg fpofgEach weight ratio is a list of numbers. For example, [1,2,3] represents theratio 1 : 2 : 3. The order of the operations within the ratios is primarily by role(generator, mutator, and observer) and then alphabetically. Invoking help withthe -h ag gives this order.For example, using a dug manager generated from the signature of Figure 6.3,

www.manaraa.com

148 CHAPTER 6. AUBURN: BENCHMARKING TOOLList Man -g "Profile [1] [Phase [2,1.5,1,2.5,3,1] 0 0.2 0.3]" 123-o example.duggenerates a dug in the �le example.dug, using a single-phased pro�le: the gen-eration weight ratio is redundant as there is only one generator; the mutation-observation weight ratio iscatenate : cons : tail : head : lookup : isEmpty = 2 : 1:5 : 1 : 2:5 : 3 : 1;the mortality is 0; the pmf is 0.2; and the pof is 0.3. The dug generator is givena seed 123 for pseudo-random number generation.Other ags modify the behaviour of dug generation:-a fPhase ArgumentgSee Section 3.4.3. The default is no phase argument.-b fPool SizegSee Section 4.1.1, Choosing non-version arguments from the graph. Thedefault is 10.-fL fMinimum Frontier SizegSee Section 4.1.1, The dug Generation Algorithm. The default is 1.-fU fMaximum Frontier SizegSee Section 4.1.1, The dug Generation Algorithm. The default is 10.-n fNumber of NodesgThe number of nodes in the generated dug. The default is 10000.Sections 4.1.1 and 4.3.1 detail the implementation of dug generation.6.4.2 dug Pro�lingThe dug manager can calculate a pro�le of a dug with:Sig Man -p fProfile Fileg fdug FilegThe pro�le may be piped to standard output using the -pP ag. The pro�le iswritten in the form given in Section 6.4.1, along with the shadow pro�le (Sec-tion 3.4.4), the maximum frontier size, and the mean frontier size. The initialfrontier size is always zero.

www.manaraa.com

6.5. SHADOW DATA STRUCTURE 149For example,List Man -p example.profile example.dugplaces the pro�le of example.dug in the �le example.profile.As with dug generating, a phase argument can be given using the -a ag.6.4.3 dug DescribingAs dug �les are compressed binary �les|to reduce input and output overhead indug evaluation|Auburn also provides visual and textual descriptions of a dug.The visual description of a dug is suitable for the GraphViz package of AT&T[17], and produced by:Sig Man -d fGraph Fileg fdug FilegThe textual description of a dug is very simple, and produced by:Sig Man -t fText Fileg fdug FilegAs with dug generation and dug pro�ling, output can be piped to standardoutput using similar ags: -dP and -tP for visual and textual descriptions re-spectively.For example, the dug of Figure 3.4 can be converted to a �le viewable throughGraphViz (see Figure 6.4) or converted to a text �le (see Figure 6.5). Note thatthe textual description resembles Haskell code. Indeed, adding the -H ag makesthe textual description a Haskell program that evaluates the dug|see Figure 6.6.6.5 Shadow Data StructureA shadow data structure aids the generation of dugs, and adds information topro�les|see Section 3.4. The shadow data structure must export the following:� The type of a shadow� The shadow operations� The shadow of an unevaluated version argument (see Section 4.3.4)

www.manaraa.com

150 CHAPTER 6. AUBURN: BENCHMARKING TOOL

empty [],1

cons [99],2

empty [],3

cons [104],4

isEmpty [],11tail [],9

lookup [1],10catenate [],8

tail [],7

2

catenate [],6

2

head [],5

1

1

Figure 6.4: Output from the GraphViz package viewing the dug of Figure 3.4(the orientation, the spacing and the font size were altered so the output could �ton this page). The functions �, �, and �|see De�nition 3.6|are indicated on thegraph. Each node is labelled with the partial application given by � (the nameof an operation and a list of non-version arguments), and the node's position inthe order of evaluation, given by �. The arc labels given by � are placed next tothe relevant arcs.

www.manaraa.com

6.5. SHADOW DATA STRUCTURE 151n1 = emptyn2 = cons 99 n1n3 = emptyn4 = cons 104 n3n5 = head n4n6 = catenate n2 n4n7 = tail n6n8 = catenate n2 n7n9 = tail n8n10 = lookup n8 1n11 = isEmpty n9Figure 6.5: Textual description of the dug of Figure 3.4. Each line describes thebirth of a node.
� The guards� The type of a shadow pro�le� The shadow pro�le functions� The type of a phase argument� The phase functionsGiven only the signature of an adt, it is impossible to generate a suitable shadowdata structure for an adt in general. However, Auburn can generate a trivialshadow data structure, or guess at one based on size.6.5.1 Trivial Shadow Data StructureA trivial shadow data structure stores no information in the shadow, allows everyoperation application, gives an empty shadow pro�le, and puts every version in

www.manaraa.com

152 CHAPTER 6. AUBURN: BENCHMARKING TOOLimport Listos0 = []n1 :: List Intn1 = emptyn2 :: List Intn2 = cons 99 n1n3 :: List Intn3 = emptyn4 :: List Intn4 = cons 104 n3n5 = head n4os1 = fromEnum n5 : os0n6 :: List Intn6 = catenate n2 n4n7 :: List Intn7 = tail n6n8 :: List Intn8 = catenate n2 n7n9 :: List Intn9 = tail n8n10 = lookup n8 1os2 = fromEnum n10 : os1n11 = isEmpty n9os3 = fromEnum n11 : os2main = print (sum (reverse os3))Figure 6.6: Textual description of the dug of Figure 3.4 as a Haskell program.Running this program evaluates the dug it describes.

www.manaraa.com

6.5. SHADOW DATA STRUCTURE 153Phase 1. It is useful for providing a base on which to build a non-trivial shadowdata structure. For example, the types of every function required are present.Auburn builds a trivial shadow data structure from a signature �le with:auburn -sT fSignature FilegFor example,auburn -sT Listgenerates a trivial shadow data structure in the �le List Shadow.hs.The generation of a trivial shadow data structure is quite straightforward, sowe do not give any implementation details here.6.5.2 Size-Based Shadow Data StructureA size-based shadow data structure stores the size of a version in its shadow.This size is then used: (1) to guard against unde�ned applications; (2) to phaseversions into those no larger than a given size, and those larger; and (3) tocalculate the average and standard deviation of the size of every version acrossall mutations and observations. Example 3.27 is an instance of such a shadowdata structure.Auburn can only guess at a size-based shadow data structure, using the typesof the adt operations, as given by the signature. For most of the commonadts Auburn guesses correctly: queues, lists, random-access sequences, catenablesequences, and heaps. However, some adts require a more sophisticated shadowdata structure, for example, sets and �nite maps (the size of a set varies accordingto which element is added or removed, and this is not captured by the type of anoperation).Auburn sets the size of an unevaluated version argument to 0, on the basisthat none of the elements of an unevaluated version are examined.Auburn guesses at a size-based shadow data structure by using the signature�le with:auburn -sS fSignature FilegFor example, using the signature List.sig of Figure 6.3,

www.manaraa.com

154 CHAPTER 6. AUBURN: BENCHMARKING TOOLauburn -sS Listguesses (correctly) at a size-based shadow data structure for lists, and places itin the �le List Shadow.hs.Guessing Size-Based Shadow Data StructuresThe method for guessing the de�nitions of the shadow operations and the guardsof a size-based shadow data structure is tailored for the simple adts that canbe shadowed by size. The phasing and the shadow pro�ling remain constant forevery adt|for further details of these, see Example 3.27.Consider the following simple adts: sequences (with or without access tofront or rear, random access, and catenation), heaps, sets, �nite maps (with �xedkey type to make the adt simple), and bags. Of these, sets, �nite maps, and bagscannot be shadowed by size. Of the rest, all have their size-based shadow datastructure guessed correctly by Auburn1. Table 6.2 shows the desired de�nitionsof the shadow operations of all these adts. Table 6.3 condenses these de�nitionsinto rules for Auburn to use. Table 6.4 shows the desired de�nitions of guardsof the same adts. Table 6.5 condenses these de�nitions into rules for Auburn touse.For example, for the signature of Figure 6.3, Auburn de�nes the type ofshadows withdata Shadow = Shadow {size :: Int}and de�nes the shadow of the cons operation ascons_Shadow :: Int -> Shadow -> Shadowcons_Shadow i0 (Shadow {size=s0}) = Shadow {size=s0+1}and de�nes the guard of the head operation usinghead_Guard :: Shadow -> Boolhead_Guard (Shadow {size=s0}) = s0>01It may be possible to form an adt signature that models a sequence or a heap in a waythat makes Auburn guess incorrectly, but that is not the case for the adt signatures given inthis thesis.

www.manaraa.com

6.6. DUG EVALUATOR 155and de�nes the guard of the cons operation usingcons_Guard :: Shadow -> [IntSubset]cons_Guard (Shadow {size=s0}) = [Pool]Note that Auburn uses Pool instead of All to select an argument where thereare no restrictions. This enables the user to control Pool arguments with thepool size (see Section 4.1.1).6.6 dug EvaluatorAuburn can generate a dug evaluator speci�c to an adt and an implementationof that adt.auburn -e fImplementation Nameg fSignature FilegFor example,auburn -e NaiveList Listproduces a dug evaluator in the �le List Eval NaiveList.hs importing themodule NaiveList which should implement the adt whose signature is given inList.sig.The dug evaluator takes two arguments: the name of the dug �le to evaluate,and the number of internal repetitions of this evaluation (useful for increasing thetime of evaluation to a measurable size).Sig Eval Implementation fdug fileg fNo. of RepetitionsgFor example,List Eval NaiveList example.dug 10evaluates the dug example.dug 10 times using the implementation NaiveList.As Section 4.3.2 and Section 6.1 mention, the overhead of a dug evaluatorimplemented entirely in Haskell can sometimes be unacceptable. Moving thealgorithm into C and calling the Haskell adt operations from within C reducesthis overhead signi�cantly. The C routines are interfaced to Haskell using Green

www.manaraa.com

156 CHAPTER 6. AUBURN: BENCHMARKING TOOL
Operation No. of Arguments Result ofT a a Int Shadow Operationempty 0 0 0 0singleton 0 0 1 1tail/init/deleteMin 1 0 0 s0 � 1update 1 1 1 s0++/merge 2 0 0 s0 + s1cons/snoc/insert 1 0 1 s0 + 1Table 6.2: Shadow operations of simple adts that can be shadowed by size. Ashadow operation takes shadow arguments s0, s1, . . . , sk.

No. of Arguments Condition Result ofT a a Int Shadow Operation0 m n n1 m 0 s0 � 1l m n n = 0 _m > 0 s0 + : : :+ sl�1l m n n > 0 ^m = 0 s0 + : : :+ sl�1 + nTable 6.3: Rules for guessing the result of a size-based shadowoperation. A shadow operation takes shadow arguments s0, s1, . . . , sk.

www.manaraa.com

6.6. DUG EVALUATOR 157
Operation No. of Arguments Type of Result ofT a a Int Result Guardtail/init/deleteMin 1 0 0 T a s0 > 0head/�ndMin 1 0 0 a s0 > 0size 1 0 0 Int TrueisEmpty 1 0 0 Bool Trueempty 0 0 0 T a True++/merge 2 0 0 T a Truesingleton 0 0 1 T a [Pool]cons/snoc/insert 1 0 1 T a [Pool]lookup 1 1 0 a [0..s0 � 1]update 1 1 1 T a [Pool, 0..s0 � 1]Table 6.4: Guards for simple adts that can be shadowed by size. A guard takesarguments s0, s1, . . . , sk.
No. of Arguments Type of Result of GuardT a a Int Result1 0 0 T a or a s0 > 0l 0 0 Any Truel m n Any Replace a with Pooland Int with 0..s0 � 1Table 6.5: Rules for guessing the result of a guard using size-based shadows. Aguard takes arguments s0, s1, . . . , sk.

www.manaraa.com

158 CHAPTER 6. AUBURN: BENCHMARKING TOOLCard [43], extended to allow C to call Haskell (included with the nhc13 compiler[53]). Supplying the ag -G informs Auburn to use Green Card in creating thedug evaluator. For example,auburn -G -e NaiveList Listproduces a dug evaluator in the �le List Eval NaiveList.gc importing theHaskell module NaiveList, and the C library Auburn evaldug.c.Sections 4.1.2 and 4.3.2 detail the implementation of a dug evaluator.6.7 Null ImplementationAuburn can generate a null implementation of an adt.auburn -n fSignature FilegA null implementation performs very little work but provides operations of thecorrect type. Evaluating a dug with the null implementation gives an estimateof the overhead of dug evaluation, allowing a better estimate of the actual workdone by the operations of other implementations.For example,auburn -n Listproduces a null implementation in the �le List Null.hs of the adt whose sig-nature is in the �le List.sig.A null implementation de�nes the exported type constructor as a nullary dataconstructor Null. For example, for the type constructor List of Figure 6.3, thenull implementation de�nesdata List a = NullEach operation ignores its arguments but returns some value of the correct type.But what value do we return of type a? We avoid this problem by noting thatas we only use the null implementation to evaluate dugs with the type variablea instantiated to Int, we de�ne operations over versions of type T Int.

www.manaraa.com

6.8. DUG EXTRACTION 159For List Int the null implementation returns Null, for Int it returns 7, andfor Bool it returns True2. For example, the lookup operation is implemented bylookup :: List Int ! Int ! Intlookup = 7As the bookkeeping in dug evaluation is strict (see Section 4.3.2), evaluating adug with this very lazy implementation will force all of the bookkeeping withoutperforming much more work, giving a good estimate of the work done by thebookkeeping.6.8 dug ExtractionAuburn can transform an application that imports an implementation of an adtinto a similar application that performs the same work whilst also producing adug of the way it uses the adt implementation.auburn -x fImplementation Fileg fMain Fileg fSignature FilegAuburn wraps the implementation module and the main module to produce thedug as a side-e�ect (see Sections 4.2.1 and 4.3.3).But how do we implement this? The application may consist of many modules,some of which will import the adt. We do not want to change every suchmodule, so we must keep the same module name for the wrapped implementation.As Haskell compilers use the convention that a module appears in a �le of thesame name, we must replace the existing implementation module with the newwrapped module. Instead of trying to insert the new de�nitions into the oldimplementation module, we rename the old implementation module, place it ina di�erent �le, and import it. The import is quali�ed to avoid name clashes.Similarly, instead of trying to insert the new de�nition of main into the main�le, we import the old de�nition into a new main �le. In order to import theold main module into the wrapped main module, we must rename the main2Returning 0 for Int may invoke an optimisation in the compiler, reducing the bookkeepingwork for the null implementation. However, we wish to use the bookkeeping of the null imple-mentation as an estimate of the bookkeeping of other implementations. Similarly, we do notreturn False for Bool, since fromEnum evaluates this to 0.

www.manaraa.com

160 CHAPTER 6. AUBURN: BENCHMARKING TOOLmodule from Main. As Haskell also has the convention that the Main modulemay be implicitly de�ned in a �le of any name, we may need to add a moduledeclaration and an export declaration, exporting the old main function. The newmain module imports the old main module, quali�ed to avoid name clashes.The wrapped modules �les use Green Card. They import C functions froman Auburn library Auburn extractdug.c. Auburn creates backups of the re-named �les to prevent accidental loss and to aid recovery. Auburn can revert theimplementation and main �les to the original versions with:auburn -u fImplementation Fileg fMain Fileg fSignature FilegFor example,auburn -x NaiveList mean Listmoves NaiveList.hs to Old NaiveList.hs, and mean.hs to Old mean.hs.The module NaiveList is an implementation of an adt whose signature isin List.sig. The main module in mean.hs de�nes an application that im-ports this implementation. Auburn also creates the �les NaiveList.gc andmean.gc and creates backups of the old �les at auburn-backup.NaiveList.hsand auburn-backup.mean.hs. The new main �le mean.gc de�nes an imple-mentation that imports the new implementation NaiveList.gc. These compileand link with the C �le Auburn extractdug.c, the �les Old NaiveList.hs andOld mean.hs, and with any other �les the old main �le imported, to produce adug-extracting executable mean. This runs as before, but also produces a dugin the �le app.dug. Also,auburn -u NaiveList mean Listremoves the �les NaiveList.gc and mean.gc, and restores the �les NaiveList.hsand mean.hs from their backups.6.9 AutomationAuburn provides tools to automate most of the work involved in a benchmarkingexperiment.

www.manaraa.com

6.9. AUTOMATION 1611. Making the executables: auburnExp2. Making dugs: makeDugs3. Timing the evaluations of dugs: evalDugs4. Gathering the times of evaluations: processTimes5. Cleaning up after Tools 2, 3, and 4: cleanDugs6. Tracing bugs in adt implementations7. Gathering benchmarking resultsTools 2 through 5 are used by Tools 6 and 7. The implementation of Tools 2through 5 is straightforward. The user will probably not need to use them directly,but instead use Tools 1, 6, and 7. For further details of Tools 2 through 5, seeAppendix C.Tool 1, auburnExp, is quite simple. It creates a make�le, for use with theGNU make utility [16]. This automates the building, compiling, and linking ofall the executables needed by the other tools.Tools 6 and 7 are implemented within the same executable, which we shallnow describe in detail.6.9.1 BenchmarkerAuburn can generate a benchmarker speci�c to an adt and some of its imple-mentations with the following:auburn -b fImplementation Modulesg fSignature FilegFor example,auburn -b NaiveList AVLList Listcreates a benchmarker in the �le List Bmark.hs.The benchmarker serves two purposes: (1) tracing bugs in adt implementa-tions, and (2) gathering benchmarking results.

www.manaraa.com

162 CHAPTER 6. AUBURN: BENCHMARKING TOOLTracing BugsA benchmarker can search for the smallest dug that causes an error when eval-uated by the adt implementations. A dug causes an error when any implemen-tation fails to evaluate the dug|for example, because of a run-time error|or ifany two implementations return di�erent checksums.Sig Bmark -q fSeedgThe benchmarker uses the seed to direct the random search. The benchmarkergenerates a series of dugs. If a dug causes an error, the benchmarker reportsthe error and the dug, and then generates a smaller dug. It is possible that thebenchmarker generates a dug that is smaller than the smallest dug that causesan error. Therefore, if a dug does not cause an error, the benchmarker thengenerates a larger dug.The benchmarker displays a dug as a Haskell program using the dugmanagerwith the ags -t and -H|see Section 6.4.3. This program does not require a dug�le to read, as the dug is contained within the program. Hence it may be copiedinto a �le, and compiled on its own, perhaps with the tracing facility of thecompiler turned on.If a dug causes an error, and it is the smallest such dug found so far, thisfact is also reported. This allows the user to let the benchmarker run for as longas they like, scan the output for the last report of a smallest dug, and hence �ndthe smallest erroneous dug found overall. A neater solution using some formof interrupt signal handling would be preferable, but Haskell does not supportexception handling.See Section 7.1.2 for an example of using a benchmarker to �nd bugs.Gathering Benchmarking ResultsA benchmarker can compute, gather, and analyse benchmarking results; that is,it can measure how well di�erent adt implementations perform across di�erentdatatype usages. Speci�cally, the benchmarker provides the following function-ality:

www.manaraa.com

6.9. AUTOMATION 163� Generate a set of dugs with randomly chosen pro�les, measure the perfor-mance of each adt implementation evaluating each dug, and record theresults as a sample.fSigg Bmark -g fSeedg -o fSample FilegThe seed is used to direct the choice of pro�les and the generation of dugs.� Induce a decision tree from a sample, perhaps using one of two pruningtechniques.fSigg Bmark -s fSample Fileg -i [-r j -P] -w fTree FilegThe ag -r requests reduced-error pruning whereas the ag -P requestsvery pessimistic pruning|see Section 5.4.2.� Report the accuracy of a given decision tree on a given sample.fSigg Bmark -s fSample Fileg -t fTree Fileg -c fReport Fileg� Use a decision tree to decide which implementation suits a given pro�le.fSigg Bmark -t fTree Fileg -d fProfile FilegThese ags may be combined. An accuracy report may be written to standardoutput using the ag -cP. Similarly modi�ed ags (using the post�x P) exist forreading or writing a tree or a sample from standard input or to standard output.Random SamplingTracing bugs and gathering benchmarking results both require the benchmarkerto create a dug from a randomly chosen pro�le. Each pro�le attribute is chosenfairly from a list of about 20, with the list varying according to the attribute. Ev-ery weight ratio component is chosen from [0; 0:05; : : : ; 1]. The mortality is chosenfrom [0; 10�4; 10�3:75; : : : ; 10�1]. The pmf is chosen from [0; 2�20; 2�19; : : : ; 2�2].The pof is chosen from [0; 0:05; : : : ; 1]. These lists may be changed by the user.Auburn uses these lists by default to attempt a fair distribution of benchmarksover the datatype usage space. The quality of \fairness" must reect the \typical"

www.manaraa.com

164 CHAPTER 6. AUBURN: BENCHMARKING TOOLapplication and therefore any such attempt is primarily guided by experience. Onthis basis, we shall now attempt to justify our choice of lists.Using a uniform distribution for each weight ratio component treats eachoperation equally and in particular allows for no use of an operation. Makinga zero weight even more likely than 1 in 20 may be justi�ed on the groundsthat applications often neglect an operation completely. The mortality and pmfattributes should be very low. For example, for a list adt, a mortality of 0.5implies that, on average, a list is mutated only once before being discarded.Similarly, a pmf of 0.5 implies that, on average, an empty list gives rise to over1000 di�erent lists after just 20 successive mutations. Given the need to keepthese attributes generally low, with the occasional high value, it is natural to usean exponential scale. The pof however may take any value between 0 and 1 andso is given a uniform distribution.The benchmarker excludes any impossible or unsuitable pro�les. For exam-ple, a pro�le where the mutation weights are all 0 without mortality being 1is impossible, and a pro�le where the observation weights are all 0 is possiblebut undesirable as it forces no work. Two other types of unsuitable pro�lesare excluded by default, both relating to operations that increase or decreasesize. A pro�le with a greater sum of size-decreasing operation weights than size-increasing operation weights is often impossible without persistent mutation, andhighly undesirable otherwise. A pro�le with all size-increasing operation weights0 is also highly undesirable. The benchmarker excludes both of these types ofpro�le by default. The user may add or remove other such exclusions of pro�les.Note that, as with generating a shadow data structure, it is impossible to tellthe e�ect of an operation on size just from its type. Therefore, when generating abenchmarker, Auburn guesses which operations increase size and which decreasesize, in the same manner as it does for generating a size-based shadow datastructure (see Section 6.5.2).6.10 SummaryAuburn can generate a benchmark from a description of use and a extract adescription of use from an application, as motivated in Section 1.3. Moreover,

www.manaraa.com

6.10. SUMMARY 165Auburn can automate calls to these functions to �nd small benchmarks revealingbugs in implementations and also to produce a summary, in the form of a decisiontree, of which implementation is best according to the datatype usage.Chapter 7 gives examples of using Auburn in this way, and evaluates Auburn'sperformance and accuracy.

www.manaraa.com

166 CHAPTER 6. AUBURN: BENCHMARKING TOOL

www.manaraa.com

Chapter 7
Results
Chapter 6 presented a benchmarking tool, Auburn, built on Chapters 3{5. Thischapter uses Auburn and evaluates its accuracy at predicting the best data struc-ture.Section 7.1 uses Auburn on the data structures reviewed in Chapter 2 toproduce a summary of which data structure is best when. Section 7.2 uses sev-eral real applications as benchmarks to test the advice produced by Auburn inSection 7.1. Section 7.3 examines the possible sources of inaccuracy in Auburn.Technical Note. All benchmarks in this chapter, whether real or generated byAuburn, are compiled using the York nhc13 compiler [53] (release v0.9.4), andrun in a heap of 80Mb, on an SGI Indy running IRIX 5.3. As with the remainderof this thesis, we use Auburn version 2.3. All benchmarks are run, repeatinginternally if necessary, till the total time is at least 1 second. Each benchmark istimed just once, to an accuracy of 0.01 seconds, given as the \user time" by thestandard UNIX command time.7.1 Benchmarking Three adtsIn Chapter 2, we reviewed several implementations of three adts: queues,random-access sequences1, and heaps. We shall now use Auburn to benchmarkthese implementations. There are �ve stages in our experiment:1As some implementations of the random-access sequence adt do not support the operationssnoc, last and init, we remove these operations from the adt for the purpose of benchmarking.167

www.manaraa.com

168 CHAPTER 7. RESULTS� Set up the Auburn executables.� Check the correctness of the implementations.� Fine-tune the implementations.� Run and time the implementations.� Induce decision trees from the times.7.1.1 Setting UpFor each of the three adts, setting up the Auburn executables is straightforward.� We make a directory for the adt, say Queue. Into this directory, we placeeach implementation of the adt. Auburn creates a make�le in this directorywithauburnExp� We make the Auburn executables withmake SIG=Queuewhich instructs Auburn to create a common signature from all implemen-tations with names ending in Queue (see Section 6.3). When prompted tocheck the guess at a size-based shadow data structure, we continue withmakeas Auburn guesses correctly for each of the three adts, and so we need notmodify the shadow data structure.All of the executables needed for our experiment are now available: the dugmanager, the dug evaluators, and the benchmarker. The benchmarker uses thedefault pro�le space described in Section 6.9.1.

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 1697.1.2 Tracing BugsBefore we benchmark the implementations, we should ensure that we have codedthem correctly. Although type checking may remove most accidental errors, somemay remain. It is also possible that the implementation presented in the literaturecontained a mistake. We can use Auburn to check that the implementations donot produce any run-time errors and that they produce the same results as eachother. Section 6.9.1 describes this in further detail. For example, we may entera command such asQueue Bmark -q seedwhere seed is an initial value for the pseudo-random number generator. Thebenchmarker may then output a report like the following:*** Tracer: Potential bug found. The following implementations:*** PhysicistsQueue*** either did not evaluate the dug correctly, or gave a different*** checksum to the implementation `BankersQueue'.Given that PhysicistsQueue is the only implementation to di�er in checksumfrom the implementation BankersQueue, we can be fairly sure that the error isin PhysicistsQueue. However, a report like the following:*** Tracer: Potential bug found. The following implementations:*** Batched1Queue, BatchedQueue, Bootstrapped1Queue,Bootstrapped2Queue, BootstrappedQueue, Implicit1Queue,Implicit2Queue, ImplicitQueue, Multihead1Queue, MultiheadQueue,NaiveQueue, PhysicistsQueue, RealTimeQueue*** either did not evaluate the dug correctly, or gave a different*** checksum to the implementation `BankersQueue'.tells us that the bug is probably in BankersQueue.Along with the above report, the benchmarker outputs the dug responsible asa Haskell program (see Section 6.9.1). To �nd the bug, we choose to compile thedug with the York nhc13 compiler [53] with tracing enabled [50]. Note howeverthat we may use any other tracer or debugger, or we may simply inspect the dug.

www.manaraa.com

170 CHAPTER 7. RESULTSimport PhysicistsQueueimport Prelude hiding (head,tail)os0 = []n1 :: Queue Intn1 = emptyn2 = isEmpty n1os1 = fromEnum n2 : os0n3 :: Queue Intn3 = snoc n1 7main = print (sum (reverse os1))Figure 7.1: The smallest dug found by the queue benchmarker that causes anerror in the physicist's queues. The queue benchmarker searched for about anhour.We let the benchmarker run for a long time, trying to �nd the smallest dugthat causes an error. The smaller the dug, the easier it is to �nd the bug. Outof 23 implementations, we �nd 4 contain bugs. All of these bugs result fromaccidental errors. We shall now describe 2 of these bugs.Physicist's QueuesThe queue benchmarker �nds that the dug of Figure 7.1 causes our �rst imple-mentation of physicist's queues (see Section 2.1.5) to evaluate with a checksumdi�erent to the other queue implementations. Using the tracer of nhc13, wequickly �nd that the physicist's queue is evaluating isEmpty n1 to False. As n1is empty, we would instead expect isEmpty n1 to evaluate to True. Examiningthe code for isEmptyisEmpty (Queue (x:w) f lenF r lenR) = TrueisEmpty _ = False

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 171we �nd that the two cases are swapped, returning True when the answer is False,and vice versa. To �x the bug, we just swap True with False.Bootstrapped QueuesThe queue benchmarker �nds a subtle bug in the bootstrapped queue implemen-tation (see Section 2.1.7). It can only �nd dugs of a reasonable size|above 20nodes|that contain the bug. The smallest dug that it �nds on a fairly largerun, taking several hours, has 22 nodes. We omit the dug here as it is ratherlarge. The dug evaluator for bootstrapped queues reports the error tail Empty.In order to understand the bug, it is necessary to understand part of the codeimplementing bootstrapped queues. A bootstrapped queue has a front list, amiddle queue of lists, and a rear list. The code also stores the size of the frontand middle combined, and the size of the rear.data Queue a = Empty| Queue [a] (Queue [a]) Int [a] IntSo, Queue f m fmN r rN has front f, middle m, rear r, and the size of the frontand middle combined is fmN, and the size of the rear is rN.We compile the dug with tracing, and look for the root of the problem. Theerror results from a call to tail on an empty queue. The source of the tail isin the dug itself. The shadow data structure prevents such a call in a dug, andso the error must lie in the empty queue. The tracer reveals that a call to tailon a queue with 1 element in the front and 3 elements in the rear produces theempty queue. However, the front-middle size �eld, fmN, is 5, where it should be1. This error leads to the queue becoming empty.We step back through the trace of the queue till fmN agrees with the size off and m combined. At this point, a list is pulled out of m. Before the pull, fmNagrees with f and m; after the pull, it does not. Before the pull, m contains twolists, one of 2 elements, and one of 4 elements; after the pull removes the list of2 elements, m is empty, whereas it should contain the list of 4 elements.Therefore, we �nd that fmN is correct, but that the queue has lost someelements from its middle. Let m1 be the middle queue before the pull, and m2 bethe empty middle queue after the pull. Examining the trace of m2, we �nd a check

www.manaraa.com

172 CHAPTER 7. RESULTSon the size of the front and rear of m2. The front and rear of m1 each contain onelist, but the pull leaves m2 with an empty front. However, the fmN �eld for m2 is1. This error leads to the queue being discarded as empty.But why is the fmN �eld of m2 not 0? Further back in the trace of m2, we �ndthat the pull copies the fmN of m2 from m1. However, after a pull, the combinedsize of the front and middle of the middle should be one less. This is the bug:The implementation of pull on a queueQueue f (Queue mf mm mfmN mr mrN) fmN r rNdoes not reduce mfmN.7.1.3 Fine-Tuning the ImplementationsWhen coding an implementation, there are many design decisions to make. Forexample, we might have the option to use a strictness ag on an integer �eld.This may make a signi�cant di�erence to the performance of the implementation.Auburn helps us to make such design decisions. Auburn can compare the overallperformance of an implementation, with and without a minor modi�cation, on alarge sample of benchmarks.We make several minor modi�cations to the implementations of the threeadts. We use the benchmarker of each adt to time each implementation and itsmodi�cations over a sample of 100 benchmarks. The benchmarker can report theoverall performance of an implementation I by checking the accuracy of the treewith a single leaf I. A \decision tree" made from a single leaf I always choosesI. Therefore, the accuracy of this tree reports how many times this choice iscorrect|that is, how many times I is the winner|and the average ratio I to theactual winner.For example, to �nd the overall e�ciency of implementation BankersQueueon the sample sample, useecho BankersQueue | Queue_Bmark -tP -s sample -cPThis gives the number of times BankersQueue was the best implementation,and more importantly, the mean ratio of the time for BankersQueue comparedto the time of the best implementation. By comparing the mean ratio of an

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 173Modi�cation Description E�ect on Use?PerformanceBankers Add strictness ags �2% �Batched Remove reverse [x] from snoc +10% XBootstrapped Merge calls to head and tail incheckF +0% �Implicit{1 Use TwoInTwo instead of a pair inthe inner queue. +4% XImplicit{2 Merge calls to head and tail intail. +12% XMultihead Change to Okasaki's implementa-tion. �6% �Physicists Add strictness ags. +1% �Table 7.1: The e�ect of modi�cations on performance of queue implementationsover a sample of 100 benchmarks.implementation with and without a modi�cation, we have an estimate of theoverall e�ect of the modi�cation.Each implementation may have several or no modi�cations. We choose thebest combination of modi�cations for each implementation. Tables 7.1, 7.2 and 7.3show the results of the �ne-tuning. The e�ect on performance is calculated byAverage ratio after modi�cationAverage ratio before modi�cation � 100%We decide to use the modi�cation if the e�ect on performance is signi�cant|above 3%. Note that the benchmarker uses the default pro�le space described inSection 6.9.1. Appendix B details each modi�cation in full.An interesting point to note from the results, is that adding strictness agsmakes very little di�erence.7.1.4 Inducing Decision TreesFor each adt, we use the benchmarker to time the implementations chosen fromthe �ne-tuning of Section 7.1.3. We have several options for inducing the decision

www.manaraa.com

174 CHAPTER 7. RESULTS
Modi�cation Description E�ect on Use?PerformanceAVL{1 Replace < and == with compare inlookup and update. �21% �AVL{2 Replace < and == with compare inlookup and update, with LT �rst. �21% �AVL{3 Place < �rst in lookup andupdate. +1% �AVL{4 Split case on a pair into two, incons and tail. +21% XAdams Maintain the balance invariantperfectly. �1% �Braun Merge calls to head and tail intail. +4% XElevator{1 Change oor separation from 10to 3. +5% �Elevator{2 Change oor separation from 10to 5. +13% XElevator{3 Change oor separation from 10to 25. �32% �SkewBin Add strictness ags. +1% �ThreadSkewBin Add separate constructor for rank1 elements. +63% XTable 7.2: The e�ect of modi�cations on performance of random-access sequenceimplementations over a sample of 100 benchmarks.

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 175Modi�cation Description E�ect on Use?PerformanceBinomial Add strictness ags. �2% �BootSkewBin Add strictness ags. +0% �Leftist Specialise insert. +19% XPairing{1 Replace <= with < in merge. �10% �Pairing{2 Specialise insert. +8% XSkewBin Add strictness ags. �1% �Table 7.3: The e�ect of modi�cations on performance of heap implementationsover a sample of 100 benchmarks.tree. Do we prune the tree? If so, using which method? We want the tree thatmost accurately represents the e�ciencies of the implementations according todatatype usage. But how do we know which tree is the best? We want to makea general recommendation, for any adt.Choosing the Best Decision TreeOne way to estimate the accuracy of a tree is through collecting an additionalsample of benchmarking results, and examining the accuracy of each tree on theunseen results. How large a sample do we collect for the induction of decisiontrees, and how large an additional sample for testing these trees? We decide totake as large a sample as we can �t in an overnight batch for the induction ofdecision trees, on the basis that a user will not want to take much longer thanthis. We take a much larger sample for the purpose of testing these trees, on thebasis that we want to test the trees as much as possible.We take a training sample of 200 dugs for each adt from which to inducethe decision trees. These samples take about 10 hours to collect in total. Wetake a further test sample of 500 dugs for each adt with which to test the trees.These samples take about 25 hours to collect in total. For example, the followingcommand:Queue Bmark -g seed -n 200 -o final.sample

www.manaraa.com

176 CHAPTER 7. RESULTSgenerates a sample of size 200, writing the sample to the �le final.sample. Weuse a heap of 80Mb for the dug evaluator compiled using nhc13, which takesheap ags within +RTS and -RTS ags, and we pass these ags as follows:Queue Bmark -g seed -n 200 -o final.sample-e "-r 1 -R 5 -o \"+RTS -H80M -RTS\""The ags -r 1 -R 5 are the default ags passed to the tool evalDugs describinghow to run the dug evaluator|for further details see Appendix C. All othersettings are the default, including using the default pro�le space described inSection 6.9.1.From each training sample, we induce two trees: one using the gain criterionand the other using the gain ratio criterion. As well as keeping these trees, wealso prune each of them using both reduced error pruning and very pessimisticpruning. For example, the following command:Queue_Bmark -s final.sample -i -r -G -w re.treeinduces a tree from the sample in final.sample using the gain criterion, prunesthe tree using the reduced error method, and writes the tree to re.tree.For each of the three adts, Table 7.4 shows the accuracy of each of the sixresulting trees applied to the test sample.Recommendation for the Most Accurate Tree. We want to make a generalrecommendation for which tree to use when we want the best prediction of themost e�cient competing implementation.For queues and heaps, the accuracy of the original tree is about the same as theaccuracy of either of the pruned trees. However, for random-access sequences, themean ratio of the trees pruned using the reduced error method is signi�cantlyhigher than the original trees or the trees pruned using the very pessimisticmethod. Further, the mean ratio is lower when using the gain ratio criterion.There is little to choose between the accuracy of the original tree and the treepruned using the very pessimistic method, but the latter is smaller. Therefore,based on this evidence, to produce an accurate tree, we recommend using thegain ratio criterion, followed by pruning using the very pessimistic method.

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 177
adt Pruning Criterion Size Success MeanRate (%) RatioNone Gain 25 83 1.023Gain Ratio 29 79 1.026Queue Reduced Gain 5 86 1.011Error Gain Ratio 6 80 1.023Very Gain 16 87 1.010Pessimistic Gain Ratio 17 84 1.015None Gain 25 79 1.174Gain Ratio 28 77 1.099RASeq Reduced Gain 6 75 1.506Error Gain Ratio 9 75 1.207Very Gain 23 79 1.172Pessimistic Gain Ratio 22 78 1.093None Gain 19 83 1.054Gain Ratio 23 84 1.047Heap Reduced Gain 4 77 1.059Error Gain Ratio 5 84 1.035Very Gain 17 83 1.054Pessimistic Gain Ratio 17 85 1.045Table 7.4: The accuracy of various trees applied to the corresponding test sample.The size of a tree is the number of branch nodes. A success is a correct predictionof the winning implementation. The mean ratio is calculated from the ratios ofthe times taken by the predictions to the times taken by the winners.

www.manaraa.com

178 CHAPTER 7. RESULTSRecommendation for the Smallest Accurate Tree. Although the accuracyof a tree is very important, it is also important for the tree to be small. Thesmaller the tree, the easier it is to analyse the tree, matching the design of theimplementation to the resulting empirical performance. Therefore we also want tomake a general recommendation for which tree to use when we want a predictionfrom a small but accurate tree.In every case, pruning using the reduced error method produces the smallesttrees. Of these trees, using the gain criterion produces a tree that is a littlesmaller. Therefore, to produce a small but fairly accurate tree, we recommendusing the gain criterion, followed by pruning using the reduced error method.Bene�ts of Using TreesHow much do we gain from choosing an implementation according to the datatypeusage? How does using a tree compare with choosing the same implementationregardless of datatype usage? Tables 7.5, 7.6 and 7.7 show the average ratio ofeach implementation over the corresponding training samples.For queues, the Batched implementation wins most often on the test samplewith a very good mean ratio of 1:02. So in the case of queues, there is little togain from choosing the implementation according to datatype usage|one shouldjust choose the Batched implementation regardless. However, the most accuratetree still manages to improve on this uniform selection with a mean ratio of 1:01,as does the smallest tree with a mean ratio of 1:011.Similarly, for heaps, the Pairing implementation wins most often on the testsample with a very good mean ratio of 1:08. So, as with queues, choosing thePairing implementation regardless of datatype usage is close to the optimal choice.Still, the most accurate tree improves on this with a mean ratio of 1:035, as doesthe smallest tree with a mean ratio of 1:059.However, for random-access sequences, the results are more mixed. The AVLand ThreadSkewBin implementations come �rst most often, but the AVL imple-mentation has a better overall performance, and the Elevator implementation hasthe best overall performance with a mean ratio of 2:12. The most accurate treemanages a mean ratio of 1:093, and the smallest tree manages a mean ratio of

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 179
Implementation Training Sample Test SampleWinner (%) Mean Ratio Winner (%) Mean RatioBankers 0 1.70 0 1.72Batched 72 1.02 72 1.02Bootstrapped 0 1.99 0 2.00Implicit 16 1.16 17 1.18Multihead 0 2.30 0 2.33Naive 3 16.11 3 19.15Physicists 0 2.12 0 2.14RealTime 10 1.19 9 1.22Table 7.5: Average ratio of the time taken by each queue implementation com-pared to the winner over the training sample of 200 benchmarks and the testsample of 500 benchmarks.
Implementation Training Sample Test SampleWinner (%) Mean Ratio Winner (%) Mean RatioAVL 38 1.69 36 2.21Adams 0 4.18 0 6.05Braun 0 5.24 0 5.67Elevator 10 2.00 8 2.12Naive 6 7.88 10 7.54SkewBin 0 2.54 0 2.69Slowdown 0 2.86 0 3.26ThreadSkewBin 46 2.95 46 8.09Table 7.6: Average ratio of the time taken by each random-access sequence im-plementation compared to the winner over training sample of 200 benchmarksand the test sample of 500 benchmarks.

www.manaraa.com

180 CHAPTER 7. RESULTS
size <= 8.69

tail <= 0.122

Yes

tail <= 0.29

No

Batched (27/12)

Yes

Implicit (67/9)

No

mortality <= 0.016

Yes

RealTime (38/7)

No

tail <= 0.267

Yes

Batched (156/28)

No

Batched (201/7)

Yes

RealTime (11/8)

No

Figure 7.2: The tree induced using the gain criterion on the training sample forthe queue adt, pruned using the reduced error method.
1:506, each much better than the best uniform choice of a single implementation.Therefore, based on these results, the best implementation of queues isBatched, and the best implementation of heaps is Pairing, regardless of howthese data structures are used. However, for random-access sequences, the bestimplementation does vary according to how the data structure is used. Theseresults are discussed below in greater detail.ResultsUsing the recommendations above for accurate and small trees, the accurate treesare too large to show and discuss. However, Figures 7.2, 7.3 and 7.4 show thesmallest trees. Each leaf is annotated with (N=E), where N is the number ofbenchmarks in the test sample covered by this leaf, and E is the number ofmisclassi�cations by this leaf. A benchmarker produces an accuracy report (see

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 181
size <= 97.728

lookup <= 0.079

Yes

AVL (139/32)

No

Naive (87/46)

Yes

update <= 0.08

No

ThreadSkewBin (65/1)

Yes

size <= 28.014

No

ThreadSkewBin (143/21)

Yes

tail <= 0.071

No

AVL (27/7)

Yes

cons <= 0.202

No

AVL (18/2)

Yes

Elevator (21/16)

No

Figure 7.3: The tree induced using the gain criterion on the training sample forthe random-access sequence adt, pruned using the reduced error method.

www.manaraa.com

182 CHAPTER 7. RESULTSImplementation Training Sample Test SampleWinner (%) Mean Ratio Winner (%) Mean RatioBinomialHeap 0 4.95 0 4.56BootSkewBinHeap 0 4.64 0 4.52LeftistHeap 0 1.99 0 1.98NaiveHeap 26 1.30 20 1.28PairingHeap 74 1.09 80 1.08SkewBinHeap 0 5.40 0 5.01SplayHeap 0 8.35 0 7.08Table 7.7: Average ratio of the time taken by each heap implementation comparedto the winner over training sample of 200 benchmarks and the test sample of 500benchmarks.
pmf <= 0.031

size <= 18.712

Yes

Naive (84/38)

No

size <= 2.53

Yes

deleteMin <= 0.252

No

Pairing (21/4)

Yes

Naive (97/57)

No

Pairing (284/7)

Yes

Naive (14/11)

No

Figure 7.4: The tree induced using the gain criterion on the training sample forthe heap adt, pruned using the reduced error method.

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 183Section 6.9.1) giving these annotations, which help to interpret the trees. Thesigni�cance of a leaf can be estimated from the number and proportion of winningimplementations that it classi�es correctly.For example, the deeper of the two leaves labelled with the RealTime queueimplementation in Figure 7.2 only classi�es 3 of the 11 winning implementationscorrectly. Hence this is not a very signi�cant leaf. On the other hand, the top-most leaf labelled with the ThreadSkewBin random-access sequence implementa-tion in Figure 7.3 classi�es 64 out of 65 winning implementations correctly. Hencethis is a very reliable leaf. Therefore it is a very signi�cant leaf in the analysis ofthe tree. Recall that each test sample contains 500 di�erent benchmarks.Analysis of the Queue Decision Tree. Looking at Figure 7.2, there areonly two signi�cant cases where the Batched implementation consistently losesto another implementation:� Small size, fair tail weight (Implicit). This may be the result of the Im-plicit implementation evaluating all operations on small queues withoutadditional function calls. The Batched implementation on the other hand,must always make at least one extra function call in evaluating tail on aqueue of any size.� Fair size, large tail weight (RealTime). It is not clear why the RealTimeimplementation should beat the Batched implementation so consistently forthis region of the pro�le space. Okasaki writes that the RealTime imple-mentation is \the fastest known real-time implementation when used per-sistently". However, his comment concerns an implementation in a strictlanguage (SML) where explicit laziness is costly, and it is not clear if thesame applies to an implementation in Haskell. To examine the e�ect ofpersistence, we check the accuracy of a tree that splits up the test sampleaccording to the pmf. Table 7.8 shows the results. It is clear from theseresults that the pmf does not have a signi�cant role to play in decidingwhich implementation wins. Using pof instead of pmf produces similarresults. Therefore, this case remains unexplained.

www.manaraa.com

184 CHAPTER 7. RESULTSpmf Winner (%)RealTime Batched0 � pmf < 0:0001 10 630:0001 � pmf < 0:001 12 690:001 � pmf < 0:01 5 790:01 � pmf < 1 9 67Table 7.8: The e�ect of persistence on the performance of the RealTime andBatched queue implementations on the test sample.Analysis of the Random-Access Sequence Decision Tree. Almost all ofthe leaves in Figure 7.3 are signi�cant|that is, almost all of them have a lowproportion of errors. The Elevator leaf has a high proportion of errors, and theremaining leaves on the subtree from the test tail � 0:071 show AVL to win overhalf of the cases (36 out of 66). We consider the other leaves in turn.� Large size (AVL). The AVL and Adams implementations are the most tree-like implementations, which gain strength as the size increases, becauseof their logarithmic complexity. The AVL implementation bene�ts frombalancing specialised to adding or removing an element at the left|that is,from cons or tail. It is not clear if the Adams implementation could use asimilar improvement.� Fair size, small lookup weight (Naive). This is a little surprising. If fewupdate operations are done, then we would expect the Naive implementationto win. But what if there are quite a lot of update operations? We mightexpect the Naive implementation to lose. The leaf's annotation does showquite a few errors, but there is another reason: An update will only be fullyevaluated if it is forced. The only observations in the absence of lookupare head and isEmpty, and because the Naive implementation is so lazy,these observers will only force updates on the �rst element. The otherimplementations are not as lazy, and so do not bene�t as much. The issueof strictness is examined in more detail in Section 7.3.3.

www.manaraa.com

7.1. BENCHMARKING THREE ADTS 185� Fair size, fair lookup weight, small update weight (ThreadSkewBin). Theannotation shows this leaf is very reliable, with 64 out of the 65 casescorrect. The ThreadSkewBin implementation deliberately implements ane�cient lookup operation, at the expense of an ine�cient update operation.� Small size, fair lookup weight, fair update weight (ThreadSkewBin). Al-though ThreadSkewBin implements update to take O(i) time, where i isthe index of the element updated, for small lists, this is not very di�erentfrom the logarithmic complexity of the AVL implementation. The simplic-ity of the ThreadSkewBin implementation makes it win on small lists, evenwith many update applications.� Fair size, fair lookup weight, fair update weight (AVL).With enough updateoperations, and a reasonably sized sequence, the AVL implementation beatsthe ThreadSkewBin implementation.Analysis of the Heap Decision Tree. As with queues, Figure 7.4 showsthat a single implementation (Pairing) dominates the results. Once again, thereare only two signi�cant cases where another implementation beats the Pairingimplementation.� Large pmf (Naive). More than half of the benchmarks with a large pmfare won by the Naive implementation. Okasaki advises in [38] that Pairingheaps are not e�cient under persistent use.� Small size, but not very small size (Naive). The Naive implementationwins for small heaps, which is typical of a naive implementation of an adt.Surprisingly though, the Pairing implementation wins signi�cantly for verysmall heaps. This may be the result of the newtype constructor in Naivecausing an extra function call, as compared with the Pairing implementa-tion.It is surprising that Splay heaps perform so poorly. We shall see in Section 7.2.1that Splay heaps perform much better for some real benchmarks. Why do theyperform so badly under Auburn-generated benchmarks? Perhaps there is anaspect of datatype usage that Auburn does not control but �xes in a region

www.manaraa.com

186 CHAPTER 7. RESULTSwhere Splay heaps perform badly. Two possible candidates include the minimumfrontier size, which a�ects the applications of non-unary mutators like merge,and the pool size, which a�ects the number of equal elements in a heap. Thebenchmarker cannot record either of these factors currently, only pro�le andshadow pro�le attributes.7.1.5 SummaryGiven these results from Auburn, which implementation should we use for queues,random-access sequences, and heaps? For queues, we recommend you always useBatched queues. For random-access sequences, we make the following recommen-dations: use AVL trees if your lists are quite large (an average length of above100); use Naive lists if you are not doing many lookup or update operations; useThreadSkewBin lists if you are doing quite a few lookup operations, but not do-ing many update operations, or if your lists are quite small (an average length ofbelow 30); otherwise, use AVL trees. For heaps, we recommend that you alwaysuse Pairing heaps.7.2 Evaluating AuburnWe use Auburn to produce advice about the choice of implementation of threeadts in Section 7.1.4. But how good is this advice?Ultimately, the value of Auburn's advice lies in how well it predicts whichimplementation is the best. To test this, we construct several real benchmarks|real in that they produce useful results. We time each benchmark with eachimplementation, to �nd which implementation really is the best. By comparingthis with Auburn's prediction, based on the pro�le of the benchmark, we canestimate Auburn's accuracy in practice.7.2.1 Real BenchmarksAll of the benchmarks are based on either sorting a list or processing a graph.There are four benchmarks for each adt, and four data sets for each benchmark.This gives a total of 16 di�erent uses of each adt. We describe each benchmark

www.manaraa.com

7.2. EVALUATING AUBURN 187very briey. References to literature give further details of the algorithms, andthe source code is available from the Auburn web page [4].Queue BenchmarksThe queue benchmarks are the hardest to �nd.� Shellsort. It is possible to implement Shell's sort [48] using queues [26].� Breadth-First Search (BFS). Breadth-�rst search of a graph is a commonuse of queues, see [11] (page 469).Since we could �nd no more benchmarks, and since varying the increments usedby Shellsort varies how the algorithm uses the queue dramatically, we let threesets of increments provide three of the four queue benchmarks.Random-Access Sequence BenchmarksAn array is one of the most commonly used data structures, even in functionalprograms, so benchmarks are not hard to �nd. However, we also wish to includealgorithms that use the sequences as lists, as in [33].� Bucketsort. This sort uses random-access operations heavily, see [11] (page180).� Quicksort. Sorting a list using a functional implementation of Quicksort[19] does not use any random-access operations.� Depth-First Search (DFS). Implementing a graph as a random-access list ofadjacent vertices [11] (page 465) allows any graph algorithm to use random-access lists. We choose one of the simplest graph algorithms, depth-�rstsearch [11] (page 477).� Kruskal's Minimum-Cost Spanning Tree (KMCST). Kruskal implements aminimum cost spanning tree algorithm [11] (page 504) using a disjoint-setdata structure [11] (page 440) which we implement using a random-accesslist.

www.manaraa.com

188 CHAPTER 7. RESULTSHeap BenchmarksA few common algorithms use a priority queue, or a heap. Many of these howeveruse additional operations like decreaseKey. This operation reduces the key of anyelement in the heap by a given amount. We replace this operation with an insertof the element with a lower key, and a guard against reading the same elementmore than once. This is not the most e�cient implementation of decreaseKey,but it does give us real benchmarks using heaps in a variety of ways. Very fewalgorithms use the merge operation: We could �nd only one.� Heapsort. This is a simple sorting algorithm [11] (page 147).� Mergeable Minimum-Cost Spanning Tree (MMC). This is the only heapbenchmark to use the operation merge [11] (page 418).� Dijkstra's Shortest Paths (DSP). We replace decreaseKey with insert asexplained above in the modi�ed Dijkstra algorithm [11] (page 530).� Prim's Minimum-Cost Spanning Tree (PMC). Similarly, we replace de-creaseKey with insert in Prim's algorithm [11] (page 505).ResultsTables 7.9, 7.10 and 7.11 give the results of running each benchmark, including:the winning implementation; the ratio of the implementation predicted to win bythe recommended accurate tree; the ratio of the implementation predicted to winby the recommended small but accurate tree; the ratio of the implementationwith the best overall performance in the training samples of Section 7.1.4 (seeTables 7.5, 7.6 and 7.7); and the average ratio of all implementations.The ratios of the implementations predicted by the two trees that Auburnproduced from the training samples in Section 7.1.4 indicate Auburn's accuracy.To aid the interpretation of this �gure, the ratio of the implementation withthe best overall performance in the training samples gives the di�erence betweenAuburn's prediction and a uniform choice made regardless of datatype usage.Further, the average ratio of all implementations gives the di�erence betweenAuburn's prediction and a random choice of implementation.

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 189For queues, the uniform choice (of Batched queues) has a very good averageratio of 1.068, yet both of Auburn's trees predict a better implementation onaverage. All three are much better than a random choice.For random-access sequences, the uniform choice (of AVL trees) has an averageratio of 1.837, indicating that the best implementation varies signi�cantly acrossthe benchmarks, as we would expect from the results of Section 7.1.4. Both ofAuburn's predictions perform better on average than the uniform choice, andmuch better than the random choice.For heaps, like queues, the uniform choice (of Pairing heaps) has a very goodratio of 1.022, and neither of Auburn's trees can improve on this. However,apart from one very bad prediction (PMC benchmark on data set 3), Auburn'spredictions are still much better than a random choice.For a discussion of the worst of Auburn's predictions, see Section 7.3.4.Summary. The summary of Section 7.1.4 advised that we use always useBatched queues and Pairing heaps, regardless of datatype usage, and that we usea di�erent random-access sequence implementation according to speci�c aspectsof the datatype usage. This advice gives very good results for the real bench-marks of this section, making choices within 10% of the best implementation forqueues and heaps, and within 30% of the best implementation for random-accesssequences.7.3 Locating Inaccuracy in AuburnSection 7.2.1 showed that the advice of Section 7.1.4 is good, but not perfect.What is the source of any inaccuracy in Auburn's results? What can go wrong?Here are the main possibilities:� The dug does not capture datatype usage su�ciently.� The pro�le of a dug does not capture datatype usage su�ciently.� Strictness issues cause the work that is actually done to be less than thework that is reportedly done.

www.manaraa.com

190 CHAPTER 7. RESULTS

Benchmark Data Winning Acc. Small Unfm. Avg.Name Set Impn. Tree Tree Ratio RatioRatio RatioBFS 1 Batched 1.046 1.046 1.000 1.054BFS 2 Batched 1.050 1.000 1.000 1.052BFS 3 Batched 1.000 1.000 1.000 1.175BFS 4 Batched 1.000 1.000 1.000 1.060Shellsort1 1 Implicit 1.110 1.054 1.110 1.525Shellsort1 2 Implicit 1.098 1.040 1.098 1.805Shellsort1 3 Implicit 1.079 1.026 1.079 4.632Shellsort1 4 Implicit 1.080 1.025 1.080 4.961Shellsort2 1 Implicit 1.087 1.054 1.087 1.454Shellsort2 2 Implicit 1.081 1.052 1.081 1.414Shellsort2 3 Implicit 1.068 1.038 1.068 2.546Shellsort2 4 Implicit 1.065 1.037 1.065 2.431Shellsort3 1 Implicit 1.000 1.000 1.126 1.388Shellsort3 2 Implicit 1.000 1.000 1.116 1.357Shellsort3 3 Implicit 1.093 1.042 1.093 1.719Shellsort3 4 Implicit 1.093 1.040 1.093 1.713Average 1.059 1.028 1.068 1.955Table 7.9: Results of running the queue benchmarks.

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 191

Benchmark Data Winning Acc. Small Unfm. Avg.Name Set Impn. Tree Tree Ratio RatioRatio RatioBucketsort 1 AVL 1.000 1.000 1.000 2.018Bucketsort 2 AVL 1.000 1.000 1.000 2.405Bucketsort 3 AVL 1.000 1.000 1.000 6.139Bucketsort 4 AVL 1.000 1.000 1.000 3.186DFS 1 AVL 1.000 1.203 1.000 1.748DFS 2 Adams 1.002 1.002 1.002 2.316DFS 3 AVL 1.000 1.000 1.000 3.075DFS 4 AVL 1.000 1.000 1.000 5.992KMC 1 ThreadSkewBin 1.000 1.000 1.181 1.404KMC 2 ThreadSkewBin 1.000 1.930 2.063 1.932KMC 3 ThreadSkewBin 1.000 2.357 1.699 1.672KMC 4 ThreadSkewBin 1.557 1.954 1.954 1.599Quicksort 1 Naive 1.000 1.000 4.856 3.193Quicksort 2 Naive 1.000 1.000 3.069 2.310Quicksort 3 Braun 1.889 1.889 1.826 1.828Quicksort 4 Naive 1.000 1.000 4.740 3.088Average 1.091 1.271 1.837 2.744Table 7.10: Results of running the random-access sequence benchmarks.

www.manaraa.com

192 CHAPTER 7. RESULTS

Benchmark Data Winning Acc. Small Unfm. Avg.Name Set Impn. Tree Tree Ratio RatioRatio RatioDSP 1 Pairing 1.000 1.021 1.000 1.061DSP 2 Splay 1.028 1.106 1.028 1.086DSP 3 Splay 1.004 1.004 1.004 1.326DSP 4 Splay 1.012 1.040 1.012 1.067Heapsort 1 Naive 1.009 1.009 1.009 1.343Heapsort 2 Splay 1.077 1.077 1.077 1.798Heapsort 3 Naive 1.008 1.008 1.008 1.387Heapsort 4 Splay 1.171 1.171 1.171 3.371MMC 1 Leftist 1.027 1.005 1.027 1.106MMC 2 Pairing 1.000 1.002 1.000 1.050MMC 3 Pairing 1.000 1.000 1.000 1.144MMC 4 Naive 1.006 1.000 1.006 1.009PMC 1 Pairing 1.007 1.007 1.000 1.068PMC 2 Pairing 1.019 1.019 1.000 1.075PMC 3 Splay 3.363 1.018 1.018 1.446PMC 4 Pairing 1.007 1.007 1.000 1.055Average 1.171 1.031 1.022 1.337Table 7.11: Results of running the heap benchmarks.

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 193� The induction and pruning processes produce inaccurate trees.We shall now deal with these individually in detail.7.3.1 Insu�cient dugWe de�ne the dug in Chapter 3 to capture the datatype usage of a data structureby an application. We base the whole of this thesis on this de�nition of a dug.But does it capture datatype usage su�ciently? We can test this as follows.We take a real application or benchmark, and run it using each adt imple-mentation, measuring the e�ciency of each. We extract the dug from each run.We then run a dug evaluator on each dug using the corresponding adt imple-mentation. We then compare the e�ciencies of the implementations when usedby the application with the e�ciencies of the implementations when used by thedug evaluators.If the dug captures all of the relevant information for inuencing the e�-ciency of an adt implementation, we would expect the relative e�ciencies of theimplementations to be the same. For example, the order of the implementations,most e�cient �rst, should be the same for the application as for the dug eval-uator. Further, the e�ciencies should correlate linearly. Note that the relativee�ciencies need not be exactly the same, as the total amount of work done di�ersbetween the application and the dug evaluator. However, this is only a constantdi�erence, which should therefore produce a linear relationship.We take the 12 benchmarks of Section 7.2.1 using all 4 data sets, giving 16di�erent uses of a data structure for each of the 3 adts. Ideally we would take onedug for each implementation, because the dug varies between implementationsdue to strictness (Section 7.3.3). However, the total number of dugs for each adtwould be the number of implementations multiplied by 16, which is too manyto handle. Hence we only take a dug from one of the implementations, and letevery implementation evaluate this representative dug. This will not a�ect theresults much, as the dugs only vary by at most 2% across implementations, andusually not at all. Also, this simpli�cation will more likely worsen our resultsthan improve them.For each comparison of relative e�ciencies of implementations, we calculate

www.manaraa.com

194 CHAPTER 7. RESULTSadt CorrelationWorst Mean BestQueue 0.482 0.924 1.0RASeq 0.983 0.998 1.0Heap -0.261 0.579 0.989Table 7.12: Correlation coe�cients for e�ciencies of implementations, comparinga benchmark with a dug evaluator. The dug evaluator is evaluating the dugextracted from the benchmark.the correlation coe�cient (as de�ned in Section 5.2). Table 7.12 gives these. Toaid our understanding of how good or bad a correlation coe�cient is, Figure 7.5gives graphs for a range of examples|the better the graph looks like a line, thecloser the relationship is to being linear.From Table 7.12, we see that the queue adt and the random-access sequenceadt show good correlations between the behaviour of implementations when usedin an application and when used in a dug evaluator. However, the heap adtshows worse results.The correlations for the queue adt are mostly very good, with 70% beingabove 0.99. However, there were a few low correlations. What makes thesecorrelations low? They all come from the same benchmark, breadth-�rst search.In fact, every correlation for this benchmark is less than 0.5, regardless of thedata set used. It is not clear why the performance of the implementations di�ersso much between benchmark and dug evaluation in this case. It is possible thatthere is some peculiar run-time behaviour due to garbage collection, as we �ndwith the Quicksort benchmark in Section 7.3.4.For the heap adt, the main reason for the bad results comes from the in-ability of the dug extraction to record the elements inserted into the heap (seeSection 4.2.1). Therefore, all elements are recorded as being 0. This a�ects thee�ciency of the di�erent implementations greatly because every element in theheap has the same value. To test this suspicion, we replace the elements of theextracted dugs with random values, and re-run the experiment to obtain newcorrelation coe�cients. We �nd that the mean correlation coe�cient increases

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 195

Correlation coe�cient = 0.482 Correlation coe�cient = 0.715

Correlation coe�cient = 0.958 Correlation coe�cient = 0.995Figure 7.5: Examples of graphs plotting data with di�erent correlation coe�-cients.

www.manaraa.com

196 CHAPTER 7. RESULTSto 0.780, signi�cantly improving on the previous mean of 0.579. If dug extrac-tion could record the elements' values, we suspect the correlation would rise evenfurther.7.3.2 Insu�cient Pro�leJust as we design the dug to capture datatype usage, we design the pro�le of adug to capture the most important aspects of datatype usage, where we measureimportance with regard to the e�ect on adt implementation e�ciency. We basethe whole of Auburn on this premise. We can test its validity as follows.We can generate several dugs from the same pro�le, thereby having similarpro�les, and compare the e�ciencies of implementations evaluating the di�erentdugs. If the pro�le of a dug does capture datatype usage su�ciently, then theresults should be similar. However, all of the dugs are generated using Auburn,and so this test is rather limited in scope.Therefore, we take the pro�les of dugs extracted from real benchmarks, andgenerate a few dugs from each pro�le. We then compare the e�ciencies of theimplementations at evaluating the dugs and at running the benchmarks. Wetake the same 12 benchmarks across 4 di�erent data sets each that we used inSection 7.3.1, giving the same 16 di�erent uses of a data structure for each of the3 adts. For each dug extracted, we generate 3 more dugs. Table 7.13 showsthe mean correlation coe�cients.The correlation between dugs generated from the same pro�le is very high foreach adt. However, the correlation between the benchmark and the generateddugs is much lower, though still quite high. This indicates that some impor-tant aspects of datatype usage are not being carried through from a benchmark,through a pro�le, into a generated dug.The most probable reason for this is the lack of size information. This iscaptured in the shadow pro�le, but this does not inuence the generated dugs.To test this, let's look at some examples of low correlations between benchmarkand generated dug.Take the Bucketsort benchmark for the random-access sequence adt. Run-ning on the third data set, the correlations between the benchmark and two of

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 197adt Mean Correlationbetween between Overalldug & Benchmark dug & dugQueue 0.859 0.923 0.891RASeq 0.704 0.969 0.836Heap 0.694 0.999 0.846Table 7.13: Correlation coe�cients for the e�ciencies of implementations, com-paring a benchmark with a dug evaluator. The dug evaluator is evaluatingdugs with similar pro�les to the pro�le of the dug extracted from the bench-mark. The mean correlation between the benchmark and one run of the dugevaluator is separated from the mean correlation between the di�erent runs ofthe dug evaluator.the three dugs are very low, at {0.118 and 0.0109. The shadow pro�le for thebenchmark reports an average size of 667. The shadow pro�les for the two dugsreport average sizes of 12 and 15. However, the shadow pro�le for the thirddug reports an average size of 88. The correlation between this dug and thebenchmark is much higher at 0.794. Therefore, for this example at least, a highercorrelation coincides with a closer average size.Take the Prim's minimum-cost spanning tree benchmark for the heap adt.Running on the third data set, the correlations between the benchmark and allthree dugs are very low, at {0.250, {0.244 and {0.242. The average size for thebenchmark is 239. The average size for the dugs are 14, 16 and 33. Again, thisexample shows low correlations for distant average sizes.In fact, almost every low correlation coincides with a large di�erence in av-erage size. To show this, Figure 7.6 plots the correlation coe�cient against thepercentage size di�erence (calculated as the di�erence in size, expressed as a per-centage of the larger size). Most of the low correlations have a high size di�erence,and most of the low size di�erences have high correlations. From this we deducethat an important datatype usage characteristic not caught in the pro�le is size.However, there are a lot of points with large size di�erences and high correla-tions, and from this we deduce that size is not always an important datatype

www.manaraa.com

198 CHAPTER 7. RESULTS

0

10

20

30

40

50

60

70

80

90

100

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
ta

ge
 S

iz
e

D
if

fe
re

nc
e

Correlation CoefficientFigure 7.6: Correlation coe�cient for implementation e�ciency plotted againstthe percentage di�erence in size, as reported by the shadow pro�le.

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 199usage characteristic.7.3.3 Strictness IssuesWhen an implementation evaluates a dug, only the observations are demanded.As a result, some of the generations and mutations may not be forced. Thisdepends on the strictness of the adt implementation evaluating the dug. Thisdiscrepancy between what is reportedly evaluated (ie. the dug) and what isactually evaluated can cause the following crucial problem: The pro�le of a dugmay no longer represent the important aspects of the actual datatype usage.To estimate the average proportion of a dug not evaluated, we evaluate 10dugs for each of the three adts, queue, random-access sequence, and heap, andall of their implementations. For any dug D0, we extract the dug D1 actuallyevaluated, by transforming a dug evaluator for dug extraction. We then repeatthis process, obtaining D2, D3, etc. till we obtain a �xed point, that is, tillDi = Di+1.For each adt, and for every combination of dug and implementation, wereach a �xed point on the second iteration, that is, D1 = D2.Every D0 has 1000 nodes. For queues, the mean di�erence in size from D0 toD1 is 5 nodes, and the maximum di�erence is 43 nodes. For any dug D0, eachqueue implementation evaluates D0 to the same degree, that is, D1 is the sameacross all the implementations. We can account for the di�erences between thesizes of D0 and D1 entirely by the following two factors:� Unless we apply an observation to the result of a mutation, the mutationis not evaluated.� The empty generator takes no arguments, so the dug extraction sharesevery application of empty (see Section 4.4.3).For random-access sequences, the mean di�erence in size from D0 to D1 is55 nodes, and the maximum di�erence is 694 nodes. Apart from the two factorsgiven above for queues, these di�erences in sizes also result from an additionalfactor: Consider n successive applications of cons to an empty list; if we applyhead to the result of these applications, a su�ciently lazy implementation of

www.manaraa.com

200 CHAPTER 7. RESULTSlists will only evaluate the last application of cons. For the implementations ofa random-access sequence that we consider, only the Naive implementation islazy enough for this factor to cause any additional di�erence. Most of the largedi�erences in size comes from the two factors listed above for queues.For heaps, the mean di�erence in size from D0 to D1 is 37 nodes, and themaximum di�erence is 160 nodes. We can account for these di�erences in thesame manner as random-access sequences, except that dug extraction does notshare every application of the empty generator. This results from the Ord contexton empty. The context makes the dug evaluator repeatedly evaluate emptyapplications.Comparing the pro�le of D0 with the pro�le of D1, averaging across all ofthe dugs of the three adts, each of the weights di�er by less than 0.01, themortality di�ers by about 0.05, the pmf di�ers by about 0.01, and the pofdi�ers by about 0.35. So only the pof di�ers greatly. This is because neitherdug evaluation nor dug extraction preserve the order of evaluation of mutations,only the order of evaluation of observations; dug evaluation cannot enforce theorder of mutations because of the privacy of the adt framework combined withlaziness (see Section 3.2.1); dug extraction changes the order of mutations to �tthe de�nition of a dug (see Section 4.3.3).What these experiments do not reveal, is how the degree of evaluation of indi-vidual nodes di�ers across implementations. For example, the Naive implementa-tion of random-access sequences is lazy enough not to evaluate fully applicationsof update, unless an application of lookup or head demands it. This causes asurprising result in the analysis of the random-access sequence decision tree|seeSection 7.1.4.7.3.4 Inaccurate TreesSome of Auburn's predictions of the best implementations for the real benchmarksof Section 7.2.1 are quite inaccurate. Is there any reason for these inaccuraciesspeci�c to the induction or pruning of trees?Consider the predictions for the implementations of random-accesssequences|see Table 7.10. The small tree predicts the winning implementa-

www.manaraa.com

7.3. LOCATING INACCURACY IN AUBURN 201tion for 10 out of the 16 combinations of benchmark and data set. For the KMCbenchmark however, it predicts the wrong implementation for three out of thefour data sets. Looking at the pro�le of the KMC benchmark running on dataset three, we �nd update = 0, lookup = 0.046, size = 63The small tree for random-access sequences in Figure 7.3 predicts the Naiveimplementation as the winner for this pro�le. This prediction would probablybe correct for a smaller size, or a smaller lookup weight, but this detail hasbeen pruned out of the tree. The most likely deciding factor between Naive andThreadSkewBin is the combination of lookup and size. A more accurate treeof the same size might be obtained if the decision tree could employ tests onarithmetic combinations of attributes. For example, lookup � size � 1. However,as Quinlan points out in Section 10.2 of [46], introducing the possibility of suchtests can slow down the process of induction by an order of magnitude.For another example of the need for combinations of attributes, consider theDFS benchmark running on data set 1. The pro�le for this run showsupdate = 0.469, lookup = 0.531, size = 9The small tree for random-access sequences in Figure 7.3 predicts theThreadSkewBin implementation as the winner for this pro�le. Again, the mostlikely deciding factor between the AVL and ThreadSkewBin implementations forthis region of the pro�le space is the combination of update and size. For any ofthe other data sets, the size is above the 28.014 used in a test in the small tree,and the tree correctly predicts AVL as the winner. This test is accurate so longas update is not very high, as it is with the pro�le above. However, again, thisdetail has been pruned out of the tree. A more accurate test might be somethinglike update � size � 5.There are only two other bad predictions by Auburn: the PMC benchmarkrunning on data set 3, and the Quicksort benchmark running on data set 3. Thebad prediction for the PMC benchmark came from using the recommended ac-curate tree. This tree is too large to analyse (with 17 tests), and so we do notdiscuss this prediction. The bad prediction for the Quicksort benchmark reects

www.manaraa.com

202 CHAPTER 7. RESULTSSampling Time (s)Interval (s) Naive Braun360 249 24360 196 24010 100 243Table 7.14: Times taken to run the Quicksort benchmark using the Naive andBraun random-access sequence implementations. The benchmark was compiledfor heap pro�ling, and run using di�erent heap sampling intervals. The heap sizeis set at 80Mb, and a constructor pro�le is requested.a very pathological result: For a benchmark with no random-access operations,the Braun tree is almost twice as fast as the Naive list! After compiling thebenchmark with heap pro�ling, running the benchmark for each implementationwith di�erent sampling rates reveals some odd behaviour. From Table 7.14, wesee that for a large sampling interval, the Braun tree is faster. As the samplinginterval decreases, the Braun time remains �xed, but the Naive time reducesdramatically. When the run-time system takes a sample of the heap, it also per-forms a garbage collection. Therefore, as the heap sampling interval decreases,more garbage collections happen. In the original run of the benchmark withoutpro�ling, no garbage collections happened at all when using the Naive implemen-tation. Given this, the most probable explanation is that without many garbagecollections, the Naive implementation su�ers from some space problem. Thisresult is peculiar to the compiler nhc13. Using the compiler HBC [18], Naive ismuch faster than Braun, regardless of how many garbage collections happen, asexpected.7.4 SummaryFor several competing implementations of three adts, we have used Auburn tocheck for their correctness, to �ne-tune the code, and to give advice on when touse which, according to the datatype usage. The user of Auburn has to do verylittle to achieve all this, as most of it is automated.

www.manaraa.com

7.4. SUMMARY 203Furthermore, we have found Auburn's advice to be quite good when appliedto real benchmarks, making choices within 10% of the best implementation forqueues and heaps, and within 30% of the best implementation for random-accesssequences. We have also examined possible sources of inaccuracy in Auburn'sadvice, and identi�ed the main problems: the inability of dug extraction torecord the values of type a (where the type of a version is T a), the lack ofinformation on the degree of evaluation of individual applications of operations,and the lack of information about the space behaviour of a benchmark.

www.manaraa.com

204 CHAPTER 7. RESULTS

www.manaraa.com

Chapter 8
Conclusions
In Chapter 1, we noted that the empirical performance of functional data struc-tures has been neglected in the existing literature. From this we decided to thedevelop the theory and practice of benchmarking functional data structures. Weshall now summarise the progress of this thesis towards this goal.8.1 Benchmarking TheoryThere is no previous literature on how to benchmark functional data structuresin a structured manner. Neither is there any attempt to de�ne \the use of a datastructure", despite its importance in the e�ciency of data structures.In Chapter 3, we have presented a formally de�ned model, a dug, to capturehow an application uses a data structure. Chapter 3 also de�ned the pro�le of adug, summarising the most importance aspects of datatype usage. This allowsus to talk about the e�ciency of data structures with reference to a few importantaspects of datatype usage.Previously, anyone wanting to benchmark some data structures would have tocreate the benchmarks manually, mostly without knowing how these benchmarksused the data structures. In Chapter 4, we have presented a method for creatinga benchmark from a pro�le of the datatype usage.Some compilers support time pro�ling that records how often a function iscalled. However, there is no way to extract other aspects of datatype usage. InChapter 4 we have presented a method for extracting a pro�le from an application.205

www.manaraa.com

206 CHAPTER 8. CONCLUSIONSIn Chapter 5 we discussed how to use the algorithms of Chapter 4 to bench-mark some competing data structures in a structured manner. After proposinga few alternatives, we chose to use the induction of a decision tree from the re-sults of a random sample of generated benchmarks. The decision tree presents asummary of which data structure is best according to the datatype usage.In summary, previous attempts to benchmark data structures relied on hand-picked benchmarks, giving results biased towards an unknown datatype usage.This thesis describes a way to automate the production of results quali�ed by adescription of datatype usage.
8.2 Benchmarking PracticeAs stated above, previously, the only way to measure the e�ciencies of competingdata structures was to �nd, code, and test benchmarks yourself. In Chapter 7we applied this method to several implementations of three di�erent adts. Thisproved to be very time-consuming and very tedious. Further, it is not clear howeach benchmark uses a data structure. So the results of this manual benchmark-ing tell us little more than which implementation was best for those particularbenchmarks.To improve on this situation, we have built a tool, called Auburn, which takesmuch less time to use, and produces much more useful results. In Chapter 7, wehave used Auburn on the same implementations of the same three adts. UsingAuburn took much less e�ort than the manual creation of benchmarks. We haveproduced a decision tree for each adt, and from these we gave advice on whento use which implementation. This advice accurately predicted the results of themanual benchmarking.We also showed in Chapter 7 that Auburn is very useful for �nding bugs inthe coding of implementations, and for testing the e�ect of minor modi�cationsto this code.

www.manaraa.com

8.3. CRITICISM 2078.3 CriticismTaking a step back, we can ask the following question: Does this thesis achieve itsgoals? We list the main points both in favour of and against this thesis, startingwith those in favour.� Benchmarking functional data structures is a subject with very little cover-age in the existing literature, and this thesis makes some key steps towardsunderstanding the important issues, including how to de�ne datatype us-age, and how to use this de�nition to conduct a benchmarking experiment.� Auburn is a useful tool for benchmarking new and existing data structures.We have demonstrated this for 23 di�erent data structures across 3 di�erentadts.� Anyone wanting to use a queue, a random-access list, or a heap may use Sec-tion 7.1.5 to decide when to use which implementation. This will improvethe e�ciency of their application.Here are the main points against this thesis:� Auburn is not very user friendly and rather involved. For example, the userhas to learn about and check the shadow data structure and pro�le space.� Section 7.3 revealed some inaccuracies in Auburn, in particular its treat-ment of strictness, space behaviour, and values of type a (where a versionhas type T a).� We do not consider the e�ect on the benchmarking results of changinglanguage, operating system, or compiler. In particular, the advice of Sec-tion 7.1.5 may not apply to other systems.� Neither do we consider the e�ect on the benchmarking results of changingthe pro�le distribution. Is the distribution we use fair?We consider these criticisms in the following section.

www.manaraa.com

208 CHAPTER 8. CONCLUSIONS8.4 Future WorkDrawing on the previous section, here are the main areas for future work.� Relax the restrictions on the operations that Auburn can benchmark. Inparticular, include higher-order operations, and operations over more thanone type. For example, Auburn cannot currently benchmark the followingoperations:fold :: (a ! b ! b) ! b ! RASeq a ! bfromList :: [a] ! RASeq a� Add tests on combinations of attributes to decision trees. This shouldimprove the accuracy of the decision trees, but may slow down the inductionprocess considerably.� Examine the e�ect of changing language, operating system, and compiler onthe benchmarking results Auburn produces. In particular, does the adviceof Section 7.1.5 apply to other systems?� Examine the fairness of the pro�le distribution.� Incorporate space information into Auburn's benchmarking procedures.Currently Auburn only measures time.� Examine the accuracy of Auburn in greater detail, explain the inaccuraciessatisfactorily, and make appropriate improvements to Auburn to reducethese inaccuracies.8.5 The FutureI have a dream that one day we will have a library of implementations of datastructures, recommended according to datatype usage. This thesis is one steptowards that dream.

www.manaraa.com

Appendix A
Source Code of Implementations
Figures A.1 through A.28 give the implementations of the data structures inChapter 2 used in the benchmarking of Section 7.1.4.module BankersQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Queue [a] Int [a] Intempty = Queue [] 0 [] 0snoc (Queue f lenf r lenr) x = queue f lenf (x:r) (lenr+1)tail (Queue (x:f) lenf r lenr) = queue f (lenf-1) r lenrhead (Queue (x:f) lenf r lenr) = xqueue f lenf r lenr| lenr <= lenf = Queue f lenf r lenr| otherwise = Queue (f++reverse r) (lenf+lenr) [] 0isEmpty (Queue [] lenf r lenr) = TrueisEmpty _ = FalseFigure A.1: Bankers queue implementation.

209

www.manaraa.com

210 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSmodule BatchedQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Queue [a] [a]empty = Queue [] []snoc (Queue [] _) x = Queue [x] []snoc (Queue f r) x = Queue f (x:r)tail (Queue (x:f) r) = queue f rhead (Queue (x:f) r) = xisEmpty (Queue [] r) = TrueisEmpty _ = Falsequeue [] r = Queue (reverse r) []queue f r = Queue f rFigure A.2: Batched queue implementation.module BootstrappedQueue (Queue,empty,snoc,head,tail,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Empty| Queue [a] (Queue [a]) Int [a] Intempty = Emptysnoc Empty x = Queue [x] Empty 1 [] 0snoc (Queue f m lenFM r lenR) x = queue f m lenFM (x:r) (lenR+1)tail (Queue (x:f) m lenFM r lenR) = queue f m (lenFM-1) r lenRhead (Queue (x:f) m lenFM r lenR) = xqueue f m lenFM r lenR| lenR <= lenFM = checkF f m lenFM r lenR| otherwise = checkF f (snoc m (reverse r)) (lenFM+lenR) [] 0checkF [] Empty lenFM r lenR = EmptycheckF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenRcheckF f m lenFM r lenR = Queue f m lenFM r lenRisEmpty Empty = TrueisEmpty _ = FalseFigure A.3: Bootstrapped queue implementation.

www.manaraa.com

211
module ImplicitQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data ZeroOrOne a = ZeroInOne | OneInOne adata OneOrTwo a = OneInTwo a | TwoInTwo a adata Queue a = Shallow (ZeroOrOne a)| Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a)empty = Shallow ZeroInOnesnoc (Shallow ZeroInOne) x = Shallow (OneInOne x)snoc (Shallow (OneInOne x)) y =Deep (TwoInTwo x y) (Shallow ZeroInOne) ZeroInOnesnoc (Deep f m ZeroInOne) x = Deep f m (OneInOne x)snoc (Deep f m (OneInOne x)) y =Deep f (snoc m (TwoInTwo x y)) ZeroInOnetail (Shallow (OneInOne x)) = Shallow ZeroInOnetail (Deep (TwoInTwo x y) m r) = Deep (OneInTwo y) m rtail (Deep (OneInTwo x) (Shallow ZeroInOne) r) = Shallow rtail (Deep (OneInTwo x) m r) = pull m rpull (Shallow (OneInOne xy)) r = Deep xy (Shallow ZeroInOne) rpull (Deep (TwoInTwo xy z) m iR) oR =Deep xy (Deep (OneInTwo z) m iR) oRpull (Deep (OneInTwo xy) (Shallow ZeroInOne) iR) oR =Deep xy (Shallow iR) oRpull (Deep (OneInTwo xy) m iR) oR = Deep xy (pull m iR) oRhead (Shallow (OneInOne x)) = xhead (Deep (OneInTwo x) m r) = xhead (Deep (TwoInTwo x y) m r) = xisEmpty (Shallow ZeroInOne) = TrueisEmpty _ = FalseFigure A.4: Implicit queue implementation.

www.manaraa.com

212 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS
module MultiheadQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Queue Bool Int Int [a] [a] [a] [a] [a] [a]empty = Queue False 0 0 [] [] [] [] [] []snoc (Queue False 0 copy h t lh h' t' hr) x =onestep (onestep (Queue True 0 0 h (x:t) h [] [] []))snoc (Queue False lendiff copy h t lh h' t' hr) x =Queue False (lendiff-1) 0 h (x:t) [] [] [] []snoc (Queue recopy lendiff copy h t lh h' t' hr) x =onestep (onestep(Queue True (lendiff-1) copy h t lh h' (x:t') hr))tail (Queue False 0 copy (x:h) t lh h' t' hr) =onestep (onestep (Queue True 0 0 h t h [] [] []))tail (Queue False lendiff copy (x:h) t lh h' t' hr) =Queue False (lendiff-1) 0 h t [] [] [] []tail (Queue recopy lendiff copy h t (x:lh) h' t' hr) =onestep (onestep (Queue True lendiff (copy-1) h t lh h' t' hr))head (Queue False lendiff copy (x:h) t lh h' t' hr) = xhead (Queue recopy lendiff copy h t (x:lh) h' t' hr) = xonestep q@(Queue False lendiff copy h t lh h' t' hr) = qonestep (Queue recopy lendiff 0 [] [] lh h' t' hr) =Queue False lendiff 0 h' t' [] [] [] []onestep (Queue recopy lendiff 1 [] [] lh h' t' (x:hr)) =Queue False (lendiff+1) 0 (x:h') t' [] [] [] []onestep (Queue recopy lendiff copy [] [] lh h' t' (x:hr)) =Queue True (lendiff+1) (copy-1) [] [] lh (x:h') t' hronestep (Queue recopy lendiff copy [] (x:t) lh h' t' hr) =Queue True (lendiff+1) copy [] [] lh (x:h') t' hronestep (Queue recopy lendiff copy (x:h) (y:t) lh h' t' hr) =Queue True (lendiff+1) (copy+1) h t lh (y:h') t' (x:hr)isEmpty (Queue False lendiff copy (x:h) t lh h' t' hr) = FalseisEmpty (Queue recopy lendiff copy h t (x:lh) h' t' hr) = FalseisEmpty _ = TrueFigure A.5: Multihead queue implementation.

www.manaraa.com

213

module PhysicistsQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Queue [a] [a] Int [a] Intempty = Queue [] [] 0 [] 0snoc (Queue w f lenF r lenR) x = queue w f lenF (x:r) (lenR+1)tail (Queue (x:w) f lenF r lenR) = queue w f' (lenF-1) r lenRwhere (x':f') = fhead (Queue (x:w) f lenF r lenR) = xqueue w f lenF r lenR| lenR <= lenF = checkW w f lenF r lenR| otherwise = checkW f (f++reverse r) (lenF+lenR) [] 0checkW [] f lenF r lenR = Queue f f lenF r lenRcheckW w f lenF r lenR = Queue w f lenF r lenRisEmpty (Queue [] f lenF r lenR) = TrueisEmpty _ = FalseFigure A.6: Physicists queue implementation.

www.manaraa.com

214 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module RealTimeQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data Queue a = Queue [a] [a] [a]empty :: Queue aempty = Queue [] [] []snoc :: Queue a -> a -> Queue asnoc (Queue f r s) x = queue f (x:r) stail :: Queue a -> Queue atail (Queue (x:f) r s) = queue f r shead :: Queue a -> ahead (Queue (x:f) r s) = xqueue :: [a] -> [a] -> [a] -> Queue aqueue f r (x:s) = Queue f r squeue f r [] = Queue f' [] f'where f' = rotate f r []rotate :: [a] -> [a] -> [a] -> [a]rotate [] (y:r) a = y : arotate (x:f) (y:r) a = x : rotate f r (y:a)isEmpty :: Queue a -> BoolisEmpty (Queue [] r s) = TrueisEmpty _ = FalseFigure A.7: RealTime queue implementation.

www.manaraa.com

215
module AVLRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup)whereimport Prelude hiding (tail,head,lookup)data Balance = L | B | Rdata RASeq a = Empty| Node Balance Int (RASeq a) a (RASeq a)empty = Emptycons x xs = case ins xs of (b,t) -> twhereins Empty = (True,Node B 0 Empty x Empty)ins (Node b n l y r) =case ins l of(False,l') -> (False,Node b (n+1) l' y r)(_,l') ->case b ofR -> (False,Node B (n+1) l' y r)B -> (True, Node L (n+1) l' y r)_ ->case l' ofNode b m l' z r' ->(False,Node B m l' z (Node B (n-m) r' y r))tail xs = case del xs of (b,t) -> twheredel (Node b 0 l x r) = (True,r)del (Node b n l x r) =case del l of(False,l') -> (False,Node b (n-1) l' x r)(_,l') ->case b ofL -> (True, Node B (n-1) l' x r)B -> (False,Node R (n-1) l' x r)_ ->case r ofNode R m l'' y r'' ->(True, Node B (n+m) (Node B (n-1) l' x l'')y r'')Node _ m l'' y r'' ->(False,Node L (n+m) (Node R (n-1) l' x l'')y r'')Figure A.8: AVL random-access sequence implementation (part I).

www.manaraa.com

216 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSupdate (Node b n l x r) i y| i == n = Node b n l y r| i < n = Node b n (update l i y) x r| otherwise = Node b n l x (update r (i-n-1) y)head (Node b 0 l x r) = xhead (Node b n l x r) = head lisEmpty Empty = TrueisEmpty _ = Falselookup (Node b n l x r) i| i == n = x| i < n = lookup l i| otherwise = lookup r (i-n-1)Figure A.9: AVL random-access sequence implementation (part II).module AdamsRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup)whereimport Prelude hiding (head,tail,lookup)data RASeq a = Empty| Branch Int Int (RASeq a) a (RASeq a)empty = EmptyisEmpty Empty = TrueisEmpty _ = Falselookup (Branch n nl l x r) i| i < nl = lookup l i| i == nl = x| otherwise = lookup r (i-nl-1)update (Branch n nl l x r) i y| i < nl = Branch n nl (update l i y) x r| i == nl = Branch n nl l y r| otherwise = Branch n nl l x (update r (i-nl-1) y)cons x Empty = Branch 1 0 Empty x Emptycons x (Branch _ _ l y r) = balBranch (cons x l) y rtail (Branch _ _ Empty y r) = rtail (Branch _ _ l y r) = balBranch (tail l) y rhead (Branch _ _ Empty y r) = yhead (Branch _ _ l y r) = head lFigure A.10: Adams random-access sequence implementation (part I).

www.manaraa.com

217
branch l x r = Branch (1 + sizeL + size r) sizeL l x rwhere sizeL = size lsingleL l x (Branch _ _ rl y rr) = branch (branch l x rl) y rrdoubleL l x (Branch _ _ (Branch _ _ rll y rlr) z rr) =branch (branch l x rll) y (branch rlr z rr)singleR (Branch _ _ ll x lr) y r = branch ll x (branch lr y r)doubleR (Branch _ _ ll x (Branch _ _ lrl y lrr)) z r =branch (branch ll x lrl) y (branch lrr z r)sigma = 5size Empty = 0size (Branch n _ _ _ _) = nbalBranch l x r| sizeL + sizeR < 2 = branch l x r| sizeR > sigma * sizeL =let (Branch _ _ rl _ rr) = rin if size rl < size rrthen singleL l x relse doubleL l x r| sizeL > sigma * sizeR =let (Branch _ _ ll _ lr) = lin if size lr < size llthen singleR l x relse doubleR l x r| otherwise = branch l x rwhere sizeL = size lsizeR = size rFigure A.11: Adams random-access sequence implementation (part II).

www.manaraa.com

218 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module BraunRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup)whereimport Prelude hiding (tail,head,lookup)data RASeq a = Empty| Node (RASeq a) a (RASeq a)empty = Emptycons x Empty = Node Empty x Emptycons x (Node l y r) = Node (cons y r) x ltail (Node l x r) = join l rwhere join Empty t = Emptyjoin (Node l x r) t = Node t x (join l r)update (Node l x r) 0 y = Node l y rupdate (Node l x r) n y| n `mod` 2 == 0 = Node l x (update r ((n `div` 2)-1) y)| otherwise = Node (update l ((n-1) `div` 2) y) x rhead (Node l x r) = xisEmpty Empty = TrueisEmpty t = Falselookup (Node l x r) 0 = xlookup (Node l x r) n | n `mod` 2 == 0 = lookup r ((n `div` 2)-1)| otherwise = lookup l ((n-1) `div` 2)Figure A.12: Braun random-access sequence implementation.

www.manaraa.com

219
module ElevatorRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup)whereimport Prelude hiding (tail,head,lookup)data RASeq a = Floor Int [a] (RASeq a)floorSep = 5empty = Floor 0 [] emptycons x s@(Floor n xs yss)| n < floorSep = Floor (n+1) (x:xs) yss| otherwise = Floor 1 [x] stail (Floor n (x:xs) yss)| n > 1 = Floor (n-1) xs yss| otherwise = yssupdate (Floor n xs yss) i y| n <= i = Floor n xs (update yss (i-n) y)| otherwise = Floor n (updateList xs i y) yssupdateList (x:xs) 0 y = y:xsupdateList (x:xs) n y = x:updateList xs (n-1) yhead (Floor n (x:xs) yss) = xisEmpty (Floor n [] yss) = TrueisEmpty _ = Falselookup (Floor n xs yss) i| n <= i = lookup yss (i-n)| otherwise = lookupList xs ilookupList (x:xs) 0 = xlookupList (x:xs) n = lookupList xs (n-1)Figure A.13: Elevator random-access sequence implementation.

www.manaraa.com

220 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module NaiveRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup)whereimport Prelude hiding (tail,head,lookup)newtype RASeq a = RASeq [a]empty = RASeq []cons x (RASeq xs) = RASeq (x:xs)tail (RASeq (x:xs)) = RASeq xsupdate (RASeq xs) n y = RASeq (updateList xs n y)updateList (x:xs) 0 y = y : xsupdateList (x:xs) n y = x : updateList xs (n-1) yhead (RASeq (x:xs)) = xisEmpty (RASeq []) = TrueisEmpty _ = Falselookup (RASeq xs) i = xs !! iFigure A.14: Naive random-access sequence implementation.

www.manaraa.com

221module SkewBinRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup) whereimport Prelude hiding (tail,head,lookup)data RATree a = Leaf a | Node (RATree a) a (RATree a)data RASeq a = Nil| Root Int (RATree a) (RASeq a)empty = Nilcons x (Root size1 l (Root size2 r rest))| size1 == size2 = Root (1+size1+size2) (Node l x r) restcons x xs = Root 1 (Leaf x) xstail (Root size (Leaf x) rest) = resttail (Root size (Node l x r) rest) =Root size' l (Root size' r rest)where size' = size `div` 2update (Root size t rest) i y| i < size = Root size (treeUpdate size t i y) rest| otherwise = Root size t (update rest (i-size) y)treeUpdate size (Leaf x) 0 y = Leaf ytreeUpdate size (Node l x r) 0 y = Node l y rtreeUpdate size (Node l x r) i y| i <= size' = Node (treeUpdate size' l (i-1) y) x r| otherwise = Node l x (treeUpdate size' r (i-1-size') y)where size' = size `div` 2head (Root size (Leaf x) rest) = xhead (Root size (Node l x r) rest) = xisEmpty Nil = TrueisEmpty _ = Falselookup (Root size t rest) i| i < size = treeLookup size t i| otherwise = lookup rest (i-size)treeLookup size (Leaf x) 0 = xtreeLookup size (Node l x r) 0 = xtreeLookup size (Node l x r) i| i <= size' = treeLookup size' l (i-1)| otherwise = treeLookup size' r (i-1-size')where size' = size `div` 2Figure A.15: SkewBin random-access sequence implementation.

www.manaraa.com

222 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSmodule SlowdownRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup) whereimport Prelude hiding (tail,head,lookup)data RASeq a = RedOrGreen (Prefix (Pairs a)) (RASeq a)| Yellows [Prefix (Pairs a)] (RASeq a)| Deepest (Prefix (Pairs a))data Pairs a = Elem a | Pair (Pairs a) (Pairs a)data Prefix a = Zero | One a | Two a a | Three a a a | Four a a a apcons a Zero = One apcons a (One b) = Two a bpcons a (Two b c) = Three a b cpcons a (Three b c d) = Four a b c dphead (One a) = aphead (Two a b) = aphead (Three a b c) = aphead (Four a b c d) = aptail (One a) = Zeroptail (Two a b) = One bptail (Three a b c) = Two b cptail (Four a b c d) = Three b c dinPrefix size p i = i < plength size pprimcons x (Deepest p) = Deepest (pcons x p)primcons x (RedOrGreen p (Yellows ps rest)) =Yellows (pcons x p : ps) restprimcons x (RedOrGreen p rest) = Yellows [pcons x p] restprimcons x (Yellows [p] rest) = RedOrGreen (pcons x p) restprimcons x (Yellows (p:ps) rest) =RedOrGreen (pcons x p) (Yellows ps rest)primhead (Deepest p) = phead pprimhead (RedOrGreen p rest) = phead pprimhead (Yellows (p:ps) rest) = phead pprimtail (Deepest p) = Deepest (ptail p)primtail (RedOrGreen p (Yellows ps rest)) =Yellows (ptail p : ps) restprimtail (RedOrGreen p rest) = Yellows [ptail p] restprimtail (Yellows [p] rest) = RedOrGreen (ptail p) restprimtail (Yellows (p:ps) rest) =RedOrGreen (ptail p) (Yellows ps rest)Figure A.16: Slowdown random-access sequence implementation (part I).

www.manaraa.com

223fix (Deepest (Four a b c d)) =RedOrGreen (Two a b) (Deepest (One (Pair c d)))fix (Yellows ps rest) = Yellows ps (fix rest)fix (RedOrGreen Zero (Deepest Zero)) = Deepest Zerofix (RedOrGreen Zero rest) = RedOrGreen (Two a b) (primtail rest)where Pair a b = primhead restfix (RedOrGreen (Four a b c d) rest) =RedOrGreen (Two a b) (primcons (Pair c d) rest)fix xs = xsempty = Deepest Zeroupdate xs i x = update' 1 xs i xupdate' size (Deepest p) i x = Deepest (pupdate size p i x)update' size (RedOrGreen p rest) i x| inPrefix size p i =RedOrGreen (pupdate size p i x) rest| otherwise =RedOrGreen p (update' (size*2) rest (i - plength size p) x)update' size (Yellows [] rest) i x =Yellows [] (update' size rest i x)update' size (Yellows (p:ps) rest) i x| inPrefix size p i = Yellows (pupdate size p i x:ps) rest| otherwise = Yellows (p:ps') rest'where (Yellows ps' rest') = update' (size*2) (Yellows ps rest)(i - plength size p) xpupdate size (One a) i x = One (pupdate' a i x (size `div` 2))pupdate size (Two a b) i x| i < size = Two (pupdate' a i x (size `div` 2)) b| otherwise = Two a (pupdate' b (i - size) x (size `div` 2))pupdate size (Three a b c) i x| i < size =Three (pupdate' a i x (size `div` 2)) b c| i < size*2 =Three a (pupdate' b (i - size) x (size `div` 2)) c| otherwise =Three a b (pupdate' c (i - size*2) x (size `div` 2))pupdate size (Four a b c d) i x| i < size =Four (pupdate' a i x (size `div` 2)) b c d| i < size*2 =Four a (pupdate' b (i - size) x (size `div` 2)) c d| i < size*3 =Four a b (pupdate' c (i - size*2) x (size `div` 2)) d| otherwise =Four a b c (pupdate' d (i - size*3) x (size `div` 2))Figure A.17: Slowdown random-access sequence implementation (part II).

www.manaraa.com

224 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSpupdate' (Elem a) 0 x mid = Elem xpupdate' (Pair xs ys) i x mid| i < mid = Pair (pupdate' xs i x (mid `div` 2)) ys| otherwise = Pair xs (pupdate' ys (i-mid) x (mid `div` 2))cons x xs = fix (primcons (Elem x) xs)head xs = case primhead xs of Elem x -> xtail xs = fix (primtail xs)isEmpty (Deepest Zero) = TrueisEmpty _ = Falselookup xs i = lookup' 1 xs ilookup' size (Deepest p) i = plookup size p ilookup' size (RedOrGreen p rest) i| inPrefix size p i = plookup size p i| otherwise = lookup' (size*2) rest (i - plength size p)lookup' size (Yellows [] rest) i = lookup' size rest ilookup' size (Yellows (p:ps) rest) i| inPrefix size p i = plookup size p i| otherwise =lookup' (size*2) (Yellows ps rest) (i-plength size p)plength size Zero = 0plength size (One a) = sizeplength size (Two a b) = size*2plength size (Three a b c) = size*3plength size (Four a b c d) = size*4plookup size (One a) i = plookup' a i (size `div` 2)plookup size (Two a b) i| i < size = plookup' a i (size `div` 2)| otherwise = plookup' b (i - size) (size `div` 2)plookup size (Three a b c) i| i < size = plookup' a i (size `div` 2)| i < size*2 = plookup' b (i - size) (size `div` 2)| otherwise = plookup' c (i - size*2) (size `div` 2)plookup size (Four a b c d) i| i < size = plookup' a i (size `div` 2)| i < size*2 = plookup' b (i - size) (size `div` 2)| i < size*3 = plookup' c (i - size*2) (size `div` 2)| otherwise = plookup' d (i - size*3) (size `div` 2)plookup' (Elem a) 0 mid = aplookup' (Pair xs ys) i mid| i < mid = plookup' xs i (mid `div` 2)| otherwise = plookup' ys (i-mid) (mid `div` 2)Figure A.18: Slowdown random-access sequence implementation (part III).

www.manaraa.com

225
module ThreadSkewBinRASeq (RASeq,empty,cons,tail,update,head,isEmpty,lookup) whereimport Prelude hiding (tail,head,lookup)data RASeq a = Empty| Cons a (RASeq a)| Node a (RASeq a) Int (RASeq a)empty = Emptylookup (Cons x xs) 0 = xlookup (Cons x xs) i = lookup xs (i-1)lookup (Node x xs r xs1) 0 = xlookup (Node x xs r xs1) i| i < r = lookup xs (i-1)| otherwise = lookup xs1 (i-r)update (Cons x xs) 0 y = Cons y xsupdate (Cons x xs) i y = Cons x (update xs (i-1) y)update (Node x xs r xs1) 0 y = Node y xs r xs1update (Node x xs r xs1) i y =case update xs (i-1) y ofxs@(Cons _ (Cons _ xs')) -> Node x xs 3 xs'xs@(Node _ _ _ (Node _ _ _ xs')) -> Node x xs r xs'cons x xs@(Node x1 xs1 r1 (Node x2 xs2 r2 xs3))| r1 == r2 = Node x xs (1+r1+r2) xs3cons x xs@(Cons _ (Cons _ xs')) = Node x xs 3 xs'cons x xs = Cons x xshead (Cons x xs) = xhead (Node x xs r xs1) = xisEmpty Empty = TrueisEmpty xs = Falsetail (Cons x xs) = xstail (Node x xs r xs1) = xsFigure A.19: ThreadSkewBin random-access sequence implementation.

www.manaraa.com

226 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS
module BinomialHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wheredata Ord a => Tree a = Node Int a [Tree a]newtype Ord a => Heap a = Heap [Tree a]rank (Node r x c) = rroot (Node r x c) = xlink t1@(Node r x1 c1) t2@(Node _ x2 c2) =if x1 <= x2 then Node (r+1) x1 (t2:c1)else Node (r+1) x2 (t1:c2)insTree t [] = [t]insTree t ts@(t':ts') =if rank t < rank t' then t:ts else insTree (link t t') ts'mrg ts1 [] = ts1mrg [] ts2 = ts2mrg ts1@(t1:ts1') ts2@(t2:ts2')| rank t1 < rank t2 = t1 : mrg ts1' ts2| rank t2 < rank t1 = t2 : mrg ts1 ts2'| otherwise = insTree (link t1 t2) (mrg ts1' ts2')removeMinTree [t] = (t, [])removeMinTree (t:ts) =if root t < root t' then (t, ts) else (t', t : ts')where (t', ts') = removeMinTree tsempty = Heap []isEmpty (Heap ts) = null tsinsert x (Heap ts) = Heap (insTree (Node 0 x []) ts)merge (Heap ts1) (Heap ts2) = Heap (mrg ts1 ts2)findMin (Heap ts) = root twhere (t, _) = removeMinTree tsdeleteMin (Heap ts) = Heap (mrg (reverse ts1) ts2)where (Node _ x ts1, ts2) = removeMinTree tsFigure A.20: Binomial heap implementation.

www.manaraa.com

227
module BootSkewBinHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wheredata Ord a => Heap a = Empty| Root a (OldHeap (Heap a))instance Ord a => Eq (Heap a) whereEmpty == Empty = True(Root x _) == (Root y _) = x == y_ == _ = Falseinstance Ord a => Ord (Heap a) wherecompare (Root x _) (Root y _) = compare x yempty = EmptyisEmpty Empty = TrueisEmpty _ = Falsemerge p Empty = pmerge Empty q = qmerge (Root x p) (Root y q)| x <= y = Root x (oldInsert (Root y q) p)| otherwise = Root y (oldInsert (Root x p) q)insert x Empty = Root x oldEmptyinsert x p = merge (Root x oldEmpty) pfindMin (Root x _) = xdeleteMin (Root x p)| oldIsEmpty p = Empty| otherwise = Root y (oldMerge q1 q2)where Root y q1 = oldFindMin pq2 = oldDeleteMin pFigure A.21: BootSkewBin heap implementation (part I).

www.manaraa.com

228 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSnewtype Ord a => OldHeap a = OldHeap [Tree a]data Ord a => Tree a = Node Int a [a] [Tree a]rank (Node r x xs c) = rroot (Node r x xs c) = xlink t1@(Node r x1 xs1 c1) t2@(Node _ x2 xs2 c2) =if x1 <= x2 then Node (r+1) x1 xs1 (t2:c1)else Node (r+1) x2 xs2 (t1:c2)skewLink x t1 t2 =let Node r y ys c = link t1 t2in if x <= y then Node r x (y:ys) c else Node r y (x:ys) cinsTree t [] = [t]insTree t ts@(t':ts') =if rank t < rank t' then t:ts else insTree (link t t') ts'mrg ts1 [] = ts1mrg [] ts2 = ts2mrg ts1@(t1:ts1') ts2@(t2:ts2')| rank t1 < rank t2 = t1 : mrg ts1' ts2| rank t2 < rank t1 = t2 : mrg ts1 ts2'| otherwise = insTree (link t1 t2) (mrg ts1' ts2')normalize [] = []normalize (t:ts) = insTree t tsremoveMinTree [t] = (t, [])removeMinTree (t:ts) =if root t < root t' then (t, ts) else (t', t : ts')where (t', ts') = removeMinTree tsoldEmpty = OldHeap []oldIsEmpty (OldHeap ts) = null tsoldInsert x (OldHeap (t1:t2:ts)) | rank t1 == rank t2 =OldHeap (skewLink x t1 t2 : ts)oldInsert x (OldHeap ts) = OldHeap (Node 0 x [] [] : ts)oldMerge (OldHeap ts1) (OldHeap ts2) =OldHeap (mrg (normalize ts1) (normalize ts2))oldFindMin (OldHeap ts) = root twhere (t, _) = removeMinTree tsoldDeleteMin (OldHeap ts) = foldr oldInsert (OldHeap ts') xswhere (Node _ x xs ts1, ts2) = removeMinTree tsts' = mrg (reverse ts1) (normalize ts2)Figure A.22: BootSkewBin heap implementation (part II).

www.manaraa.com

229
module LeftistHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wheredata Heap a = Empty| Node Int (Heap a) a (Heap a)empty = EmptyisEmpty Empty = TrueisEmpty _ = Falseinsert x Empty = Node 1 Empty x Emptyinsert x h@(Node s l y r)| x <= y = Node 1 h x Empty| otherwise = node l y (insert x r)findMin (Node _ _ x _) = xdeleteMin (Node s l x r) = merge l rmerge h Empty = hmerge Empty h = hmerge h1@(Node s1 l1 x1 r1) h2@(Node s2 l2 x2 r2)| x1 <= x2 = node l1 x1 (merge r1 h2)| otherwise = node l2 x2 (merge r2 h1)node h x Empty = Node 1 h x Emptynode Empty x h = Node 1 h x Emptynode h1@(Node s1 _ _ _) x h2@(Node s2 _ _ _)| s1 <= s2 = Node (s1+1) h2 x h1| otherwise = Node (s2+1) h1 x h2fromList = foldr insert emptyFigure A.23: Leftist heap implementation.

www.manaraa.com

230 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS

module NaiveHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wherenewtype Ord a => Heap a = Heap [a]empty = Heap []isEmpty (Heap []) = TrueisEmpty _ = Falseinsert w (Heap h) = Heap (insert' w h)insert' w [] = [w]insert' w vl@(v:vs) | w <= v = w : vl| otherwise = v : insert' w vsfindMin (Heap (v:vs)) = vdeleteMin (Heap (v:vs)) = Heap vsmerge (Heap ws) (Heap vs) = Heap (merge' ws vs)merge' [] vs = vsmerge' ws [] = wsmerge' wl@(w:ws) vl@(v:vs)| w <= v = w : merge' ws vl| otherwise = v : merge' wl vsFigure A.24: Naive heap implementation.

www.manaraa.com

231

module PairingHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wheredata Heap a = Empty| Node a [Heap a]empty = EmptyisEmpty Empty = TrueisEmpty _ = Falseinsert x Empty = Node x []insert x h2@(Node x2 hs2)| x <= x2 = Node x [h2]| otherwise = Node x2 (Node x []:hs2)findMin (Node x _) = xdeleteMin (Node _ hs) = mergePairs hsmerge h Empty = hmerge Empty h = hmerge h1@(Node x1 hs1) h2@(Node x2 hs2)| x1 <= x2 = Node x1 (h2:hs1)| otherwise = Node x2 (h1:hs2)mergePairs [] = EmptymergePairs [a] = amergePairs (a:b:hs) = merge (merge a b) (mergePairs hs)Figure A.25: Pairing heap implementation.

www.manaraa.com

232 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONS
module SkewBinHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wherenewtype Ord a => Heap a = Heap [Tree a]data Ord a => Tree a = Node Int a [a] [Tree a]rank (Node r x xs c) = rroot (Node r x xs c) = xlink t1@(Node r x1 xs1 c1) t2@(Node _ x2 xs2 c2) =if x1 <= x2 then Node (r+1) x1 xs1 (t2:c1)else Node (r+1) x2 xs2 (t1:c2)skewLink x t1 t2 =let Node r y ys c = link t1 t2in if x <= y then Node r x (y:ys) c else Node r y (x:ys) cinsTree t [] = [t]insTree t ts@(t':ts') =if rank t < rank t' then t:ts else insTree (link t t') ts'mrg ts1 [] = ts1mrg [] ts2 = ts2mrg ts1@(t1:ts1') ts2@(t2:ts2')| rank t1 < rank t2 = t1 : mrg ts1' ts2| rank t2 < rank t1 = t2 : mrg ts1 ts2'| otherwise = insTree (link t1 t2) (mrg ts1' ts2')normalize [] = []normalize (t:ts) = insTree t tsremoveMinTree [t] = (t, [])removeMinTree (t:ts) =if root t < root t' then (t, ts) else (t', t : ts')where (t', ts') = removeMinTree tsFigure A.26: SkewBin heap implementation (part I).

www.manaraa.com

233

empty = Heap []isEmpty (Heap ts) = null tsinsert x (Heap (t1:t2:ts)) | rank t1 == rank t2 =Heap (skewLink x t1 t2 : ts)insert x (Heap ts) = Heap (Node 0 x [] [] : ts)merge (Heap ts1) (Heap ts2) =Heap (mrg (normalize ts1) (normalize ts2))findMin (Heap ts) = root twhere (t, _) = removeMinTree tsdeleteMin (Heap ts) = foldr insert (Heap ts') xswhere (Node _ x xs ts1, ts2) = removeMinTree tsts' = mrg (reverse ts1) (normalize ts2)Figure A.27: SkewBin heap implementation (part II).

www.manaraa.com

234 APPENDIX A. SOURCE CODE OF IMPLEMENTATIONSmodule SplayHeap (Heap,empty,isEmpty,insert,merge,findMin,deleteMin) wheredata Heap a = Empty| Node (Heap a) a (Heap a)empty = EmptyisEmpty Empty = TrueisEmpty _ = Falseinsert x h = Node l x rwhere (l,r) = partition x hpartition pivot Empty = (Empty,Empty)partition pivot h@(Node l x r)| x <= pivot =case r ofEmpty -> (h,Empty)Node rl y rr ->if y <= pivotthen let (small,big) = partition pivot rrin (Node (Node l x rl) y small,big)else let (small,big) = partition pivot rlin (Node l x small,Node big y rr)| otherwise =case l ofEmpty -> (Empty,h)Node ll y lr ->if y <= pivotthen let (small,big) = partition pivot lrin (Node ll y small,Node big x r)else let (small,big) = partition pivot llin (small,Node big y (Node lr x r))findMin (Node Empty x r) = xfindMin (Node l x r) = findMin ldeleteMin (Node Empty x r) = rdeleteMin (Node (Node Empty x lr) y r) = Node lr y rdeleteMin (Node (Node ll x lr) y r) =Node (deleteMin ll) x (Node lr y r)merge Empty h = hmerge (Node l x r) h = Node (merge small l) x (merge big r)where (small,big) = partition x hFigure A.28: Splay heap implementation.

www.manaraa.com

Appendix B
Modi�cations to Implementations
Figures B.1 through B.25 give the modi�cations of Tables 7.1, 7.2 and 7.3, byshowing the output of the UNIX diff command. Figure B.7 gives the modi�ca-tion Multihead in the form of the modi�ed implementation, as almost all of thecode is modi�ed.5c5< data Queue a = Queue [a] Int [a] Int---> data Queue a = Queue [a] !Int [a] !IntFigure B.1: Bankers queue modi�cation.11c11,12< snoc (Queue f r) x = queue f (x:r)---> snoc (Queue [] _) x = Queue [x] []> snoc (Queue f r) x = Queue f (x:r)Figure B.2: Batched queue modi�cation.27c27,28< checkF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenR---> checkF [] (Queue (iX:iF) iM iLenFM iR iLenR) lenFM r lenR => Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenRFigure B.3: Bootstrapped{1 queue modi�cation.

235

www.manaraa.com

236 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS27c27< checkF [] m lenFM r lenR = Queue (head m) (tail m) lenFM r lenR---> checkF [] m lenFM r lenR = pull m lenFM r lenR28a29,32>> pull (Queue (iX:iF) iM iLenFM iR iLenR) lenFM r lenR => Queue iX (queue iF iM (iLenFM-1) iR iLenR) lenFM r lenRFigure B.4: Bootstrapped{2 queue modi�cation.8c8< | Deep (OneOrTwo a) (Queue (a,a)) (ZeroOrOne a)---> | Deep (OneOrTwo a) (Queue (OneOrTwo a)) (ZeroOrOne a)18c18< snoc (Deep f m (OneInOne x)) y =< Deep f (snoc m (x,y)) ZeroInOne---> snoc (Deep f m (OneInOne x)) y => Deep f (snoc m (TwoInTwo x y)) ZeroInOne24,25c24< tail (Deep (OneInTwo x) m r) = Deep (TwoInTwo y z) (tail m) r< where (y,z) = head m---> tail (Deep (OneInTwo x) m r) = Deep (head m) (tail m) rFigure B.5: Implicit{1 queue modi�cation.24,25c24,32< tail (Deep (OneInTwo x) m r) = Deep (TwoInTwo y z) (tail m) r< where (y,z) = head m---> tail (Deep (OneInTwo x) m r) = pull m r>> pull (Shallow (OneInOne (x,y))) r => Deep (TwoInTwo x y) (Shallow ZeroInOne) r> pull (Deep (TwoInTwo (x,y) z) m iR) oR => Deep (TwoInTwo x y) (Deep (OneInTwo z) m iR) oR> pull (Deep (OneInTwo (x,y)) (Shallow ZeroInOne) iR) oR => Deep (TwoInTwo x y) (Shallow iR) oR> pull (Deep (OneInTwo (x,y)) m iR) oR => Deep (TwoInTwo x y) (pull m iR) oRFigure B.6: Implicit{2 queue modi�cation.

www.manaraa.com

237module MultiheadQueue (Queue,empty,snoc,tail,head,isEmpty) whereimport Prelude hiding (head,tail)data RotationState a =Idle| Reversing Int [a] [a] [a] [a]| Appending Int [a] [a]| Done [a]data Queue a = Queue Int [a] (RotationState a) Int [a]exec (Reversing ok (x:f) f' (y:r) r') =Reversing (ok+1) f (x:f') r (y:r')exec (Reversing ok [] f' [y] r') = Appending ok f' (y:r')exec (Appending 0 f' r') = Done r'exec (Appending ok (x:f') r') = Appending (ok-1) f' (x:r')exec state = stateinvalidate (Reversing ok f f' r r') = Reversing (ok-1) f f' r r'invalidate (Appending 0 f' (x:r')) = Done r'invalidate (Appending ok f' r') = Appending (ok-1) f' r'invalidate state = stateexec2 lenf f state lenr r =case exec (exec state) ofDone newf -> Queue lenf newf Idle lenr rnewstate -> Queue lenf f newstate lenr rcheck lenf f state lenr r =if lenr <= lenf then exec2 lenf f state lenr relse let newstate = Reversing 0 f [] r []in exec2 (lenf+lenr) f newstate 0 []empty = Queue 0 [] Idle 0 []isEmpty (Queue lenf f state lenr r) = (lenf == 0)snoc (Queue lenf f state lenr r) x =check lenf f state (lenr+1) (x:r)head (Queue _ (x:f') _ _ _) = xtail (Queue lenf (x:f') state lenr r) =check (lenf-1) f' (invalidate state) lenr rFigure B.7: Multihead queue modi�cation.

www.manaraa.com

238 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS
5c5< data Queue a = Queue [a] [a] Int [a] Int---> data Queue a = Queue [a] [a] !Int [a] !IntFigure B.8: Physicists queue modi�cation.

41,44c41,45< update (Node b n l x r) i y< | i == n = Node b n l y r< | i < n = Node b n (update l i y) x r< | otherwise = Node b n l x (update r (i-n-1) y)---> update (Node b n l x r) i y => case compare i n of> EQ -> Node b n l y r> LT -> Node b n (update l i y) x r> _ -> Node b n l x (update r (i-n-1) y)55,58c56,60< lookup (Node b n l x r) i< | i == n = x< | i < n = lookup l i< | otherwise = lookup r (i-n-1)---> lookup (Node b n l x r) i => case compare i n of> EQ -> x> LT -> lookup l i> _ -> lookup r (i-n-1)Figure B.9: AVL{1 random-access sequence modi�cation.

www.manaraa.com

239
41,44c41,45< update (Node b n l x r) i y< | i == n = Node b n l y r< | i < n = Node b n (update l i y) x r< | otherwise = Node b n l x (update r (i-n-1) y)---> update (Node b n l x r) i y => case compare i n of> LT -> Node b n (update l i y) x r> EQ -> Node b n l y r> _ -> Node b n l x (update r (i-n-1) y)55,58c56,60< lookup (Node b n l x r) i< | i == n = x< | i < n = lookup l i< | otherwise = lookup r (i-n-1)---> lookup (Node b n l x r) i => case compare i n of> LT -> lookup l i> EQ -> x> _ -> lookup r (i-n-1)Figure B.10: AVL{2 random-access sequence modi�cation.
42d41< | i == n = Node b n l y r43a43> | i == n = Node b n l y r56d55< | i == n = x57a57> | i == n = xFigure B.11: AVL{3 random-access sequence modi�cation.

www.manaraa.com

240 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS< case (ins l,b) of< ((False,l'),b) -> (False,Node b (n+1) l' y r)< ((True,l'),R) -> (False,Node B (n+1) l' y r)< ((True,l'),B) -> (True, Node L (n+1) l' y r)< ((True,Node b m l' z r'),L) ->< (False,Node B m l' z (Node B (n-m) r' y r))---> case ins l of> (False,l') -> (False,Node b (n+1) l' y r)> (_,l') ->> case b of> R -> (False,Node B (n+1) l' y r)> B -> (True, Node L (n+1) l' y r)> _ ->> case l' of> Node b m l' z r' ->> (False,Node B m l' z> (Node B (n-m) r' y r))29,38c33,44< case (del l,b) of< ((False,l'),b) -> (False,Node b (n-1) l' x r)< ((True, l'),L) -> (True, Node B (n-1) l' x r)< ((True, l'),B) -> (False,Node R (n-1) l' x r)< ((True, l'),R) ->< case r of< Node R m l'' y r'' ->< (True, Node B (n+m) (Node B (n-1) l' x l'')< y r'')< Node B m l'' y r'' ->< (False,Node L (n+m) (Node R (n-1) l' x l'')< y r'')---> case del l of> (False,l') -> (False,Node b (n-1) l' x r)> (_,l') ->> case b of> L -> (True, Node B (n-1) l' x r)> B -> (False,Node R (n-1) l' x r)> _ ->> case r of> Node R m l'' y r'' ->> (True, Node B (n+m)> (Node B (n-1) l' x l'')> y r'')> Node _ m l'' y r'' ->> (False,Node L (n+m)> (Node R (n-1) l' x l'')> y r'')Figure B.12: AVL{4 random-access sequence modi�cation.

www.manaraa.com

24147a48,50> alpha :: Int> alpha = 2>57c60< in if size rl < size rr---> in if size rl < size rr * alpha62c65< in if size lr < size ll---> in if size lr < size ll * alphaFigure B.13: Adams random-access sequence modi�cation.16,17c16,18< tail (Node Empty x t) = Empty< tail (Node l x r) = Node r (head l) (tail l)---> tail (Node l x r) = join l r> where join Empty t = Empty> join (Node l x r) t = Node t x (join l r)Figure B.14: Braun random-access sequence modi�cation.8c8< floorSep = 10---> floorSep = 3Figure B.15: Elevator{1 random-access sequence modi�cation.8c8< floorSep = 10---> floorSep = 5Figure B.16: Elevator{2 random-access sequence modi�cation.8c8< floorSep = 10---> floorSep = 25Figure B.17: Elevator{3 random-access sequence modi�cation.

www.manaraa.com

242 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS

7c7< | Root Int (RATree a) (RASeq a)---> | Root !Int (RATree a) (RASeq a)Figure B.18: SkewBin random-access sequence modi�cation.

www.manaraa.com

2436a7> | Cons a (RASeq a)12a14,15> lookup (Cons x xs) 0 = x> lookup (Cons x xs) i = lookup xs (i-1)18a22,23> update (Cons x xs) 0 y = Cons y xs> update (Cons x xs) i y = Cons x (update xs (i-1) y)20c25,28< update (Node x xs r xs1) i y = cons x (update xs (i-1) y)---> update (Node x xs r xs1) i y => case update xs (i-1) y of> xs@(Cons _ (Cons _ xs')) -> Node x xs 3 xs'> xs@(Node _ _ _ (Node _ _ _ xs')) -> Node x xs r xs'25c33,34< cons x xs = Node x xs 1 xs---> cons x xs@(Cons _ (Cons _ xs')) = Node x xs 3 xs'> cons x xs = Cons x xs27a37> head (Cons x xs) = x34a45> tail (Cons x xs) = xsFigure B.19: ThreadSkewBin random-access sequence modi�cation.3c3< data Ord a => Tree a = Node Int a [Tree a]---> data Ord a => Tree a = Node !Int a [Tree a]Figure B.20: Binomial heap modi�cation.

www.manaraa.com

244 APPENDIX B. MODIFICATIONS TO IMPLEMENTATIONS45c45< data Ord a => Tree a = Node Int a [a] [Tree a]---> data Ord a => Tree a = Node !Int a [a] [Tree a]Figure B.21: BootSkewBin heap modi�cation.14c14,17< insert x h = merge (Node 1 Empty x Empty) h---> insert x Empty = Node 1 Empty x Empty> insert x h@(Node s l y r)> | x <= y = Node 1 h x Empty> | otherwise = node l y (insert x r)Figure B.22: Leftist heap modi�cation.26c26< | x1 <= x2 = Node x1 (h2:hs1)---> | x1 < x2 = Node x1 (h2:hs1)Figure B.23: Pairing{1 heap modi�cation.14c14,17< insert x h = merge (Node x []) h---> insert x Empty = Node x []> insert x h2@(Node x2 hs2)> | x <= x2 = Node x [h2]> | otherwise = Node x2 (Node x []:hs2)Figure B.24: Pairing{2 heap modi�cation.4c4< data Ord a => Tree a = Node Int a [a] [Tree a]---> data Ord a => Tree a = Node !Int a [a] [Tree a]Figure B.25: SkewBin heap modi�cation.

www.manaraa.com

Appendix C
Auburn Reference
There are various executables produced by Auburn, with various ags for mod-ifying their behaviour. Rather than give a lengthy explanation of these, we justquote the help information for each executable, that is, the output they producewhen supplied with the ag -h. Here is a list of the help pages in order: auburn, adug manager, a benchmarker, auburnExp, makeDugs, evalDugs, processTimes,cleanDugs.

245

www.manaraa.com

246 APPENDIX C. AUBURN REFERENCE
Usage: auburn [options] sigfile[.sig]Options:-c IMP-MOD1[.hs] IMP-MOD2[.hs] ... IMP-MODn[.hs]Write a signature of the common operations exported by thethe implementation modules IMP-MOD1, IMP-MOD2, ... IMP-MODn.-sT Write a trivial shadow data structure.-sS Write a best guess at size-based shadow data structure.-m Write a dug manager.-e IMP-MOD1 IMP-MOD2 ... IMP-MODnWrite a dug evaluator for each implementation module inIMP-MOD1, IMP-MOD2, ..., IMP-MODn.-n Write a null implementation.-x IMP-MOD[.hs] MAIN[.hs]-xI IMP-MOD[.hs]-xM MAIN[.hs]Write wrapped, dug-extracting versions of the implementationmodule IMP-MOD and/or the main module stored in file MAIN.Warning: The files they wrap will be backed up before beingoverwritten, but they may be restored using `-u'. The wrappedprogram will behave as before but will also extract and write adug as it is run. The wrapped files use Green Card.-u IMP-MOD[.gc] MAIN[.gc]-uI IMP-MOD[.gc]-uM MAIN[.gc]Unwrap the implementation module IMP-MOD and/or the main modulestored in file MAIN which were previously wrapped with `-x'.-pT Write a script `makeProfiles.hs' to make profiles (base version).-pS Write a best guess at a version of `makeProfiles.hs' based ona size-based shadow data structure.-b IMP-MOD1 IMP-MOD2 ... IMP-MODnWrite a benchmarker covering implementation modulesIMP-MOD1, IMP-MOD2, ..., IMP-MODn.(General.)-h Show this help.-v Show version info.-G Use Green Card to construct dug evaluator.Figure C.1: Help information for auburn.

www.manaraa.com

247
Usage: Queue_Man [options] [dug-file | -]Options:-g PROFILE SEEDGenerate a dug using the given profile, and the given seed forpseudo-random number generation. Any dug file given on thecommand line is ignored. The seed should lie between 1 and2147483646 inclusive.PROFILE is of the form:Profile GWGTS PHASESwhere GWGTS is the generator weights, and PHASES is a Haskell listwith each element of the form:Phase MOWGTS MORTALITY PMF POFwhere MOWGTS is the mutator and observer weights, with the remainingarguments giving the mortality, the persistent mutation factor andpersistent observation factor.Operator weights are given as a Haskell list of decimals and areordered within the list firstly by role and then lexically, ie.empty, snoc, tail, head, isEmpty.Note that you will probably need to enclose arguments containingspaces or parantheses in quotes to avoid confusing the shell.-a PHASEARGWhen using a profile to generate a dug with `-g', or whenproducing a profile of a dug with `-p' or `-pP', use the phaseargument PHASEARG. PHASEARG is read in by `phaseArgRead'defined in the shadow data structure and is used by `phaser' todetermine the phasing of nodes.-r FILE-rP Read a textual dug file, as outputted by `-t' or `-tP', from FILEor from standard input.-p FILE-pP Write a profile of the dug to FILE or to standard output.-N Normalise the profile written with `-p' or `-pP' with the profilegiven with `-g' (the averages of the weights are made equal foreasier comparison). If the dug is read rather than generated, makethe averages of the weights equal to one.Figure C.2: Help information for a typical dug manager (part I).

www.manaraa.com

248 APPENDIX C. AUBURN REFERENCE
-o FILE-oP Write the dug to FILE or to standard output.-d FILE-dP Write a visual depiction of the dug suitable for the `dotty'package of AT&T to FILE or to standard output.-t FILE-tP Write a text description of the dug to FILE or to standard output.-H When used with `-t' or `-tP', make the text description of the duga valid Haskell program.-h This help.The following options are only applicable when used with `-g':-b POOLSIZEThe size of the pool from which to draw integer arguments.Default: 10-fL MINFSThe minimum size of the frontier.Default: 1-fU MAXFSThe maximum size of the frontier. A value of 0 indicates no maximum.Default: 0-n NODESThe number of nodes to generate.Default: 10000Note that outputting a large amount of data to a file is significantlyslower than to standard output, eg. we recommend writing a sizeabledug to standard output and re-directing this to a file if necessary.Figure C.3: Help information for a typical dug manager (part II).

www.manaraa.com

249
Usage: Queue_Bmark [options]Options:-h Print this help.Decision Tree Inducer---------------------A sample of benchmarking results may be obtained via at most one of thefollowing flags:-g SEEDGenerate a random sample, using `makeDugs', `evalDugs', and`processTimes'. The seed should lie between 1 and 2147483646inclusive.-s FILE-sPRead in a sample from FILE or standard input.A decision tree may be obtained via at most one of the following flags:-i Induce a decision tree from the sample.-t FILE-tPRead in a tree from FILE or standard input.At least one of the following flags must be supplied to request output:-c FILE-cPCheck the accuracy of the decision tree on the sample. Output thereport to FILE or to standard output.-o FILE-oPWrite the sample to FILE or to standard output.-w FILE-wPWrite the decision tree to FILE or to standard output.-d FILE-dPUsing the profile taken from FILE or standard input, use the decisiontree to decide which implementation suits the profile. Write thedecision to standard output.The following flags can be used to modify the behaviour of the `-i' flag:-G Use the gain criterion, rather than the default gain ratio criterion.-p SIZEPrune any leaves no larger than SIZE on the induced tree.Default: 0.Figure C.4: Help information for a typical benchmarker (part I).

www.manaraa.com

250 APPENDIX C. AUBURN REFERENCE
-a Induce a decision tree on one half of the sample, prune thistree to different maximum leaf sizes, and choose the pruned treewith least error when applied to the other half of the sample.-r Perform reduced error pruning on the induced tree, by using halfof the sample for induction and half for testing.-x When used with `-a' or `-r', use the number of misclassifications asthe measure of error. Without `-x', the mean ratio of the predictedwinner is used (the larger the mean, the worse the prediction).-P Perform very pessimistic pruning on the induced tree.-C CFWhen pruning with `-P', use confidence level CF (0 < CF < 1). Thesmaller CF is, the more pruning is done.Default: 0.25.The following flags modify the behaviour of the flags above:-v Verbose. Show some of the output of generating a sample with `-g'.-V Very verbose. Show all of the output of generating a sample with `-g'.-n SIZESpecify the SIZE of a sample generated with `-g' (number of profileschosen).Default: 100.-m OPTIONSPass OPTIONS to `makeDugs' when generating a sample with `-g'.Default: "".-e OPTIONSPass OPTIONS to `evalDugs' when generating a sample with `-g'.Default: "-r 1 -R 5".-I IMP1 IMP2 ... IMPnwhen generating a sample, use the ADT implementations namedIMP1, IMP2, ..., IMPn. When reading a sample, restrict the ratiosread to these implementations.-A ATT1 ATT2 ... ATTnWhen reading a sample, restrict the profile attributes read tothose named ATT1, ATT2, ..., ATTn.ADT Implementation Tracer--------------------------q SEEDRun the tracer. The seed should lie between 1 and 2147483646inclusive, and is used to generate random dugs, printing any dugthat causes an error.The flags `-v', `-V', `-m', and `-I' also modify the behaviour of `-q'.Figure C.5: Help information for a typical benchmarker (part II).

www.manaraa.com

251

Creates a GNU makefile in the current directory to manage anexperiment using Auburn.Flags:-l LIBRARYUse Auburn library held in directory LIBRARY,eg. `-l /usr/local/lib/auburn'.Default: /usr/gem/lib/auburn-qQuiet running: do nothing but print everything.-hShow this help.Figure C.6: Help information for auburnExp.

www.manaraa.com

252 APPENDIX C. AUBURN REFERENCEMakes dugs from the profiles given in files of the form`dug-${profile}.profile' in the current directory. The dugs arestored in dug code files of the form `dug-${profile}-${seed}.dug'with their _actual_ profiles stored in files of the form`dug-${profile}-${seed}.profile'.Flags:(Where more than one value is passed, eg. with `-p', the stringpassed should be a perl expression that evaluates to an array,eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)". The followingalso seem to work fine: "4", "1,3", "3..5".)-s SIGName of signature which the dug manager uses, eg. `-s Queue'.Default: signature of first manager in current directory.-p PROFILESNames of profiles, eg. `-p "(1..8)"'.Default: all profiles in current directory.-S NNumber of different seeds per profile, eg. `-S 3'.Default: 3.-o OPTIONSOptions to pass to the dug manager. The options will immediatelyfollow the dug manager and precede its arguments, so flags for theHaskell run-time system can be included either using `+RTS' and`-RTS' (GHC and nhc do this) or directly (HBC does this).Eg. `-o "+RTS -p -RTS"' for GHC with profiling, and`-o "-"' for HBC (as a minus must precede flags passed to anexecutable), and`-o "-m -"' for HBC with profiling.Default: "-".-O OPTIONSAdditional options to pass to the dug manager. Multiple `-O'saccumulate options. The options will follow the base optionsgiven by `-o'.Eg. `-O "-n 1000"' and `-O "-b 100"' together with `-o "-"' passthe options `- -n 1000 -b 100' to the dug manager, telling it togenerate dugs of size 1000 nodes using a pool size of 100.-z SEEDInitial seed (between 1 and 2147483646 inclusive).Default: Obtained from the system clock.-qQuiet running: do nothing but print everything.-hShow this help.Figure C.7: Help information for makeDugs.

www.manaraa.com

253
Runs and times the dug evaluators on dug code files (of the form`dug-${profile}-${seed}.dug' as outputted by `makeDugs') in thecurrent directory. Writes total times (over all seeds) to files ofthe form `dug-${profile}-${implementation}.time'.Flags:(Where more than one value is passed (with `-i', `-p' and `-d'), thestring passed should be a perl expression that evaluates to anarray, eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)". Thefollowing also seem to work fine: "4", "1,3", "3..5". Note that somecharacters need to be quoted, eg. ".", so `-d test.dug' becomes`-d '"test.dug"''.)-s SIGName of signature which the dug evaluators use, eg. `-s Queue'.Default: signature of first evaluator in current directory.-i IMPSNames of implementations,eg. `-i "(NaiveQueue,SimpleQueue,BankersQueue,Queue_Null)"'.Default: all implementations for chosen signature in current directory.-p PROFILESNames of profiles, eg. `-p "(1..8)"'.Default: all profiles in current directory.-d DUGSDugs to be evaluated.Default: all dugs in current directory matching `dug-${profile}-*.dug'.-r NNumber of separate timed runs per dug, eg. `-r 3'.Default: 3.-R NNumber of internal repeated evaluations per timed run, eg. `-R 10'.Default: 10.Figure C.8: Help information for evalDugs (part I).

www.manaraa.com

254 APPENDIX C. AUBURN REFERENCE
-t COMMANDTime command to produce time information in POSIX standard 1003.2,specifically:real %euser %Usys %S(Actually, only requirement is that the output contains the string"user %U" where `%U' is the user time.)Most UNIX time commands use this form of output. GNU time does ifpassed the flag `-p'. The user time may contain a colon `:'separating minutes from seconds, eg. `12:32.54'.Eg. `-t "gnutime -p"'.Default: "time".-T TIMETimeout dug evaluators after TIME seconds. Useful for preventingexcessively slow runs of a dug evaluator. Using a TIME of 0prevents any timeouts.Default: 600.-o OPTIONSOptions to pass to each dug evaluator. The options willimmediately follow the dug evaluator and precede its arguments, soflags for the Haskell run-time system can be included either using`+RTS' and `-RTS' (GHC and nhc do this) or directly (HBC doesthis).Eg. `-o "+RTS -p -RTS"' for GHC with profiling, and`-o "-m"' for HBC with profiling.Default: "".-cIgnore checksum errors.-qQuiet running: do nothing but print everything.-hShow this help.Figure C.9: Help information for evalDugs (part II).

www.manaraa.com

255Processes times outputted by `evalDugs' (files of the form`dug-${profile}-${implementation}.time' in the current directory).Outputs resulting processed times in file `dugs.times' using summaryinformation found in `dugs.profiles'.Flags:(Where more than one value is passed, eg. with `-i' and `-p', thestring passed should be a perl expression that evaluates to anarray, eg. "(1,2,4)", or "(1..4)" or even "(1..3,5..7)".)-i IMPSNames of implementations,eg. `-i "(NaiveQueue,SimpleQueue,BankersQueue,Queue_Null)"'.Default: all implementations for chosen signature in current directory.-p PROFILESNames of profiles, eg. `-p "(1..8)"'Default: all profiles in current directory.-f FORMATFormat string used by `printf' to output the times, eg. `-f 8.3f'.Default: "8.3f".-FUse brief format. Useful for automatic processing of results.One number per line. First line contains number ofimplementations used. Remaining lines contain ratios, in theexpected order.-SSort profiles by string comparison, rather than by the defaultnumerical comparison.-qQuiet running, do nothing but print everything.-hShow this help.Figure C.10: Help information for processTimes.Cleans up all dug and profile files in current directory, that is,all files of the form `dug-*.profile' `dug-*.dug' `dug-*.time', and`dugs.times' and `dugs.profiles'.Flags:-qQuiet running: do nothing but print everything.-hShow this help.Figure C.11: Help information for cleanDugs.

www.manaraa.com

256 APPENDIX C. AUBURN REFERENCE

www.manaraa.com

Bibliography
[1] Stephen R. Adams. Implementing sets e�ciently in a functional language.Technical Report CSTR 92-10, Department of Electronics and ComputerScience, University of Southampton, 1992. (p 24)[2] Stephen R. Adams. E�cient sets|a balancing act. Journal of FunctionalProgramming, 3(4):553{562, 1993. (pp 5, 18, 21, 24)[3] G. M. Adel'son-Velskii and Y. M. Landis. An algorithm for the organizationof information. Doklady Akademia Nauk SSSR, 146:263{266, 1962. Englishtranslation in Soviet Math. Dokl., 3:1259{1262. (pp 1, 21)[4] The Auburn Home Page.http://www.cs.york.ac.uk/fp/auburn/. (p 187)[5] John Backus. Can programming be liberated from the von Neumann style?A functional style and its algebra of programs. Communications of the ACM,21(8):613{641, August 1978. (p 1)[6] W. Braun and M. Rem. A logarithmic implementation of exible arrays.Memorandum MR83/4. Eindhoven University of Technology, 1983. (p 26)[7] Gerth S. Brodal and Chris Okasaki. Optimal purely functional priorityqueues. Journal of Functional Programming, 6(6):839{857, December 1996.(pp 5, 19, 34, 37, 38)[8] Adam L. Buchsbaum. Data-structural bootstrapping and catenable deques.PhD thesis, Department of Computer Science, Princeton University, June1993. Technical Report TR-423-93. (p 14)[9] F. Warren Burton and Rex L. Page. Distributed random number generation.Journal of Functional Programming, 2(2):203{212, April 1992. (p 103)257

www.manaraa.com

258 BIBLIOGRAPHY[10] Tyng-Ruey Chuang and Benjamin Goldberg. Real-time deques, multiheadTuring machines, and purely functional programming. In Proceedings of theConference on Functional Programming Languages and Computer Architec-ture, pages 289{298, Copenhagen, June 1993. ACM Press. (p 5)[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-tion to Algorithms. MIT Press, 1990. (pp 1, 187, 188)[12] Paul F. Dietz. Fully persistent arrays. In Proceedings of the First Work-shop on Algorithms and Data Structures, volume 382 of LNCS, pages 67{74.Springer-Verlag, August 1989. (p 44)[13] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.Making data structures persistent. Journal of Computer and System Sci-ences, 38(1):86{124, February 1989. (pp 44, 46)[14] Martin Erwig. Functional programming with graphs. In Proceedings of the1997 ACM SIGPLAN International Conference on Functional Programming,pages 52{65. ACM Press, June 1997. (pp 1, 5)[15] Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator, and Robert E.Tarjan. The pairing heap: a new form of self-adjusting heap. Algorithmica,1(1):111{129, 1986. (p 39)[16] Gnu make utility.http://www.gnu.org/software/make/make.html. (p 161)[17] GraphViz: Tools for viewing and interacting with graph diagrams.http://www.research.att.com/sw/tools/graphviz/. (p 149)[18] The HBC compiler.http://www.cs.chalmers.se/~augustss/hbc/hbc.html. (p 202)[19] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10{15, 1962. (p 187)[20] Robert Hood and Robert Melville. Real-time queue operations in pure lisp.Information Processing Letters, 13(2):50{54, November 1981. (pp 10, 11,12)

www.manaraa.com

BIBLIOGRAPHY 259[21] Rob R. Hoogerwoord. A symmetric set of e�cient list operations. Journalof Functional Programming, 2(4):505{513, October 1992. (pp 18, 26)[22] John Hughes. Why functional programming matters. The Computer Jour-nal, 32(2):98{107, April 1989. (p 1)[23] E. B. Hunt, J. Martin, and P. J. Stone. Experiments in Induction. AcademicPress, New York, 1966. (p 127)[24] Haim Kaplan and Robert E. Tarjan. Persistent lists with catenation viarecursive slow-down. In Proceedings of the 27th Annual ACM Symposium onTheory of Computing, pages 93{102, May 1995. (pp 15, 18, 28)[25] Donald E. Knuth. Searching and Sorting, volume 3 of The Art of ComputerProgramming. Addison-Wesley, second edition, 1973. (p 40)[26] Graeme E. Moss and Colin Runciman. Auburn: A kit for benchmarkingfunctional data structures. In Proceedings of IFL'97, volume 1467 of LNCS,pages 141{160, September 1997. (pp xvii, 187)[27] Graeme E. Moss and Colin Runciman. Exploring datatype usage space.In Draft Proceedings of IFL'98, University College London, UK, September1998. (p xvii)[28] Graeme E. Moss and Colin Runciman. Automatic benchmarking of func-tional data structures. In Proceedings of PADL'99, LNCS, 1999. To bepublished. (p xvii)[29] Eugene W. Myers. An applicative random-access stack. Information Pro-cessing Letters, 17(5):241{248, December 1983. (pp 18, 19)[30] J. R. Norris. Markov Chains. Cambridge University Press, 1997. (pp 124,125)[31] Manuel N�u~nez, Pedro Palao, and Ricardo Pe~na. A second year course on datastructures based on functional programming. In Functional ProgrammingLanguages in Education, volume 1022 of Lecture Notes in Computer Science,pages 65{84. Springer-Verlag, December 1995. (pp 5, 18, 21, 34, 40)

www.manaraa.com

260 BIBLIOGRAPHY[32] Chris Okasaki. Amortization, lazy evaluation, and persistence: lists withcatenation via lazy linking. In IEEE Symposium on Foundations of Com-puter Science, pages 646{654, October 1995. (pp 5, 12, 19, 21, 29)[33] Chris Okasaki. Purely functional random-access lists. In Conference Recordof FPCA '95, pages 86{95. ACM Press, June 1995. (pp 5, 18, 21, 102, 187)[34] Chris Okasaki. Simple and e�cient purely functional queues and deques.Journal of Functional Programming, 5(4):583{592, October 1995. (pp 5,10, 14)[35] Chris Okasaki. Functional data structures. In Advanced Functional Program-ming, volume 1129 of Lecture Notes in Computer Science, pages 131{158.Springer-Verlag, August 1996. (pp 34, 39, 40)[36] Chris Okasaki. Purely Functional Data Structures. PhD thesis, School ofComputer Science, Carnegie Mellon University, September 1996. (p 5)[37] Chris Okasaki. The role of lazy evaluation in amortized data structures.In Proceedings of the International Conference on Functional Programming,pages 62{72. ACM Press, May 1996. (pp 10, 12, 13)[38] Chris Okasaki. Purely Functional Data Structures. Cambridge UniversityPress, 1998. (pp 1, 10, 11, 12, 13, 14, 15, 19, 21, 34, 35, 41, 44, 46, 185)[39] Chris Okasaki. Red-black trees in a functional setting. Journal of FunctionalProgramming, 1999. To appear. (p 2)[40] Melissa E. O'Neill and F. Warren Burton. A new method for functionalarrays. Journal of Functional Programming, 7(5):487{513, September 1997.(pp 1, 5, 44)[41] Steve Park. Private communication, April 1996. (p 103)[42] Steve Park and Keith Miller. Random number generators: Good ones arehard to �nd. Communications of the ACM, 31(10):1193{1201, October 1988.(p 103)

www.manaraa.com

BIBLIOGRAPHY 261[43] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. Green Card: Aforeign-language interface for Haskell. In Haskell Workshop, Amsterdam,June 1997. Published by Oregon Graduate Institute of Science & Technology.(pp 92, 98, 106, 158)[44] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81{106,1986. (pp 125, 127)[45] J. R. Quinlan. Simplifying decision trees. International Journal of Man-Machine Studies, 27:221{234, 1987. (pp 132, 135)[46] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,1993. (pp 127, 130, 135, 136, 137, 201)[47] C. M. P. Reade. Balanced trees with removals: An exercise in rewriting andproof. Science of Computer Programming, 18(2):181{204, 1992. (p 5)[48] D. L. Shell. A high-speed sorting procedure. Communications of the ACM,2(7):30{32, 1959. (p 187)[49] Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting binary searchtrees. Journal of the ACM, 32(3):652{686, July 1985. (p 41)[50] Jan Sparud and Colin Runciman. Tracing lazy functional computations usingredex trails. In Proceedings of PLILP'97, volume 1292 of Lecture Notes inComputer Science, pages 291{308, 1997. (p 169)[51] Jean Vuillemin. A data structure for manipulating priority queues. Com-munications of the ACM, 21(4):309{315, April 1978. (pp 1, 35)[52] Raymond T. Yeh, editor. Data Structuring, volume IV of Current Trends inProgramming Methodology. Prentice-Hall, 1978. (p 43)[53] York Functional Programming Group.http://www.cs.york.ac.uk/fp/. (pp 106, 110, 141, 158, 167, 169)

